Copper(II) induced oxidative modification and complexation of a Schiff base Ligand: synthesis, crystal structure, catalytic oxidation of aromatic hydrocarbons and DFT calculation[†]

Surajit Biswas^a, Arpan Dutta^a, Malay Dolai^a, Mainak Debnath^a, Atish Dipankar Jana^b and Mahammad Ali^a*

^aDepartment of Chemistry, Jadavpur University, Kolkata 700 032, India. E-mail: <u>mali@chemistry.jdvu.ac.in</u> ^b Department of Physics, Behala College, Parnasree, Kolkata, 700 060, India

Fig.S1HRMS spectra of [H₂L^a].

Fig.S2 HRMS spectra of [Cu(L^f)].

Fig.S3 HRMS spectra of [Cu(L^g)].

Fig. S4 HRMS spectra of [Cu(L^h)].

Fig. S5HRMS spectra of $[Cu(L^{f})(OOH)]^{-}$ generated *in situ* by the reaction between $[Cu(L^{2f})]$ and $H_{2}O_{2}$ in presence of **1** and equivalent amount of TEA.

Fig.S6HRMS spectra of $[Cu(L^{f})(OOH)]$ generated *in situ* by the reaction between $[Cu(L^{2f})]$ and $H_{2}O_{2}$ in presence of **1** and equivalent amount of TEA.

Cataly	Substrate	n(H ₂ O ₂)/n(Cataly	Reactio	Conversio	Yield		Major TO	TON	N Rate
st		st)	n time (h)	n	Majo r	Mino r	product		consta nt (h ⁻¹)
1	CH3	150	3 6 9 12 24	15 33 51 66 72	13 02 27 06 43 08 54 12 56 16		СН2ОН	254	
		300	3 6 9 12 24	19 36 53 70 78	16 03 29 07 44 09			272	

			57 13 60 18		
500	3 6 9 12 24	22 40 59 73 83	17 05 32 08 48 11 59 14 62 21	287	0.107 ± 0.02

Table S2.Oxidation of o-xyleneby complex 1, catalyst = 0.055 mmol.

Catalyst	Substrate	Substrate n(H ₂ O ₂)/n(Catalyst)	Reaction	Conversion	Yield		Major	TON	Rate
			(Hr.)		Major	Minor	product		(h ⁻¹)
1	СН3 СН3	150 300	3 6 9 12 24 3	17 31 50 65 71 19	14 26 41 52 55 15	03 05 09 13 16 04	CH ₂ OH CH ₂ OH	236	
			6 9 12 24	35 54 68 76	28 44 53 57	07 10 15 19		250	
		500	3 6 9 12 24	22 39 56 72 80	16 31 45 55 59	06 08 11 17 21		280	0.109 ± 0.02

Fig. S7 Liquid phase partial oxidation of p-xylene by H_2O_2 using complex **1** as catalysts.

Fig. S8 Liquid phase partial oxidation of *o*-Xylene by H_2O_2 using complex **1** as catalysts.

Fig. S9a Evaluation of rate constant from the non-linear fit of % conversion of toluene with time in h using equation $y = A^*(1-\exp(-kt))$.

Fig. S9b Evaluation of rate constant from the non-linear fit of % conversion of p-xylene with time in h using equation $y = A^*(1-\exp(-kt))$.

Fig. S9c Evaluation of rate constant from the non-linear fit of % conversion of o-xylene with time in h using equation $y = A^*(1-\exp(-kt))$.