Electronic Supplementary Information

Base-free Chemoselective Transfer Hydrogenation of Nitroarenes to Anilines with Formic Acid as Hydrogen Source by Reusable Heterogeneous Pd/ZrP Catalyst

Jaya Tuteja, Shun Nishimura and Kohki Ebitani*
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
*E-mail: ebitani@jaist.ac.jp

Table S1. Parameters for Kinetic study of p-substituted nitroarenes. ${ }^{a}$ Initial Rate/

Substrate	$\mathbf{(\mathbf { m i n } ^ { - 1 }) ^ { \boldsymbol { b } }}$	\log (initial rate)
Nitrobenzene	0.01250	-1.90
p-chloronitrobenzene	0.00560	-2.25
p-nitromethylbenzoate	0.00545	-2.26
p-nitrobenzeonitrile	0.00196	-2.71

${ }^{a}$ Reaction Conditions: Substrate (1 mmol), $2.1 \mathrm{wt} \% \mathrm{Pd} / \mathrm{ZrP}(20 \mathrm{mg})$,
FA (3 mmol), Ethanol (5 mL), $313 \mathrm{~K}, 30 \mathrm{~min}$.
${ }^{b}$ Initial rates of the each reaction were determined on the concentration of reactants as a function of time by GC.

Fig. S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the isolated aniline.

Fig. S2. ${ }^{13} \mathrm{C}$-NMR of the isolated aniline.

Fig. S3. TEM images and particle size distribution of the supported Pd catalysts.

