Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting information

"On-water" synthesis of novel trisubstituted 1, 3-thiazoles via microwaveassisted catalyst-free domino reactions

Shaik Karamthulla, Suman Pal, Md. Nasim Khan and Lokman H. Choudhury* Department of Chemistry, Indian Institute of Technology Patna, Patna-800013, India. E-mail: <u>lokman@iitp.ac.in</u>

Table of contents

1. General informationS2	

1. General information.

All starting materials were purchased from Sigma Aldrich and Alfa Aesar and used without further purification. NMR spectra were recorded on 400 or 500 MHz for ¹H and 100 or 125 MHz for ¹³C in CDCl₃ or DMSO-d6, Chemical shift values were reported in δ values (ppm) downfield from tetramethylsilane. Infrared (IR) spectra were recorded on a Shimadzu IR Affinity-1, FTIR spectrometer. Elemental analyses were carried out using either Elementar Vario EL III or Perkin-Elmer 2400 II elemental analyzers. Microwave irradiation was carried out with Initiator 2.5 Microwave Synthesizers from Biotage. Melting points were recorded by using SRS EZ-Melt automated melting point apparatus by capillary methods and uncorrected.

2. General procedure for the synthesis of 1, 3-thiazole analogues (4).

A mixture of arylglyoxal monohydrate 1 (1 mmol), 1, 3-dicarbonyl derivatives 2 (1 mmol), and thioamide derivatives 3 (1 mmol) in 3 mL H₂O was introduced in a 2-5 mL Initiator reaction vial, the mixture was irradiated for 15 minutes at 130 °C; The reaction mixture was then cooled to room temperature and the solid was filtered off, and was washed with 95% EtOH to yield the pure products 4. Some of the products 4n-4p, 4q, 4r and 4t were purified by column chromatography on a silica gel column using EtOAc–hexane mixture as the eluent.

3. Copies of ¹H and ¹³C NMR spectra of compounds

S6

S9

