# **Electronic Supplementary Information (ESI)**

# Pyrene-based D- $\pi$ -A dyes that exhibit solvatochromism and high fluorescence brightness in apolar solvents and water

## Yosuke Niko,<sup>a</sup> Yokan Cho,<sup>a</sup> Susumu Kawauchi<sup>a</sup> Gen-ichi Konishi<sup>a,b</sup>

<sup>a</sup> Department of Organic and Polymeric Materials, Tokyo Institute of Technology,
2-12-1-H-134 O-okayama, Meguro-ku, Tokyo 152-8552, Japan., Fax: +81-3-5734-2888; Tel: +81-3-5734-2321; E-mail: konishi.g.aa@m.titech.ac.jp
<sup>b</sup> PRESTO, Japan Science and Technology Agency (JST).

## **Table of Contents**

| A. (                   | General Metho            | d                  |        |       |       |        | 2                |
|------------------------|--------------------------|--------------------|--------|-------|-------|--------|------------------|
| <b>B.</b> <sup>1</sup> | H and <sup>13</sup> C NM | R Spectra          |        |       |       |        | 7                |
| C. I                   | Examination of           | water solubility   | of PSA | С     |       |        | 11               |
| D.                     | Detailed                 | photophysical      | data   | of    | PSA   | and    | РТА              |
| 12                     |                          |                    |        |       |       |        |                  |
| E. I                   | Detailed photop          | ohysical data of ] | PSAC   |       |       |        | 16               |
| F. L                   | lippert Mataga           | n plots            |        |       |       |        | 18               |
| G.                     | Fluorescence             | behavior of        | PA i   | n the | prese | nce of | H <sub>2</sub> O |
| 19                     |                          |                    |        |       |       |        |                  |
| H. I                   | DFT/TDDFT c              | alculations        |        |       |       |        | 20               |
| G. 8                   | Supplementary            | references         |        |       |       |        | 25               |

### A. General Method

Instruments All the <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on a 400 MHz JEOL LMN-EX400 or 300 MHz Bruker DPX 300 instrument with tetramethylsilane (TMS) as the internal standard. FT-IR spectra were recorded on a JASCO FT-IR 469 plus spectrometer. Melting points were obtained by a Stuart Scientific Melting Point Apparatus SMP3. MS spectra (FAB) were obtained by JEOL JMS700 mass spectrometer. All photophysical measurements performed in solutions were carried out using dilute solutions with optical density (O.D.) around 0.1 at the maximum absorption wavelength in 1 cm path length quartz cells at room temperature (298 K). In addition, all samples solutions were deaerated by bubbling with argon gas for 15 min before the measurements. The UV-Vis spectra were recorded with a Beckman Coulter DU800 UV-Vis Spectrophotometer. Fluorescence spectra were recorded on a JASCO FP-6500 Spectrofluorometer. The wavelengths obtained by fluorescence spectrometer were converted to wavenumber by using the equation  $I(v) = \lambda^2 I(\lambda)$ .<sup>1</sup> Absolute Quantum Yields  $(\Phi_{FL})$  were measured by a Hamamatsu Photonics Quantaurus QY equipped with integral sphere. The measurement error of this instrument is  $\pm$  3% of obtained  $\Phi_{\rm FL}$ values. Fluorescence lifetimes were measured at the most intense peaks, i.e., the  $\lambda_{em}$  of the compound in each solvents, using a Hamamatsu Photonics OB 920 Fluorescence Lifetime Spectrometer equipped with LEDs lamp which possesses 343 nm of wavelength, 12.6 nm of bandwidth, and 725 ps of pulse width. All lifetime data were collected in the range of 0-50 ns with 1024 channels (i.e. time/channels = 48.8 ps).

**Computational Methodology.** The equilibrium structures of the compounds investigated in this work were fully optimized by using the  $\omega$ B97X-D method with 6-31G(d,p) basis set,<sup>2</sup> which is suitable for dealing with excited states because this method includes both long-range correction and dispersion correction.<sup>3</sup> The Analytical frequencies were obtained to ensure that a local energy minimum has been located. Then, the singlet- and triplet-spin excited states for the minima have been calculated by time-dependent density functional theory (TD-DFT). All calculations were performed by using the Gaussian 09 program package<sup>4</sup> on the TSUBAME 2.0 supercomputer at Tokyo Institute of Technology.

**Materials.** Unless otherwise noted, all reagents and chemicals were used without further purification. *n*-Butyllithium and sodium *tert*-butoxide were obtained from TCI (Tokyo, Japan). Piperidine and Pd(OAc)<sub>2</sub> were prepared from Wako Pure Chem. (Tokyo, Japan). Spectrograde hexane, toluene, THF, chloroform, dichloromethane, DMF, ethanol, methanol, and 4Å molecular sieve were purchased from Nacalai Tasque (Kyoto, Japan). Ultrapure water with more than 18.2 M $\Omega$ ·cm was supplied by the Milli-Q system (Merck Millipore) and was used as solvent while measuring optical property. Spectrograde acetonitrile was obtained from DOJINDO (Kumamoto, Japan). 1,6-dibromopyrene was taken from the stock previously we synthesized.<sup>5</sup>

#### Synthesis of 1-bromo-6-(piperidin-1-yl)pyrene (2)

1,6-Dibromopyrene (5.0 g, 8.3 mmol), sodium *tert*-butoxide (1.79 g, 18.4 mmol), Pd(OAc)<sub>2</sub> (0.14 g, 0.64 mmol), BINAP (1.25 g, 2.01 mmol) and toluene (50 mL) were placed in a 100-mL two-necked flask under nitrogen. After stirring for 15 minutes, the flask was heated to 100 °C. Piperidine (1.6 mL 15.8 mmol) was then added to the solution and the resulting mixture was stirred for 12 h. Subsequently, it was quenched with water to separate the formed organic layer. The organic layer was washed with brine and dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* and the residue was subjected to silica column chromatography by chloroform/hexane = 1:1 to afford product **2** as yellow powder (2.7 g, 53%). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.41 (d, *J* = 9.3 Hz, 1H), 8.26 (d, *J* = 9.3 Hz, 1H), 8.17-8.10 (m, 2H), 8.04 (d, *J* = 9.3 Hz, 1H), 8.00-7.91 (m, 2H), 7.72 (d, *J* = 8.1 Hz, 1H), 3.19 (m, 4H), 1.92 (tt, *J* = 5.8 Hz, 5.2 Hz, 4H), 1.71 (m, 2H).

#### Synthesis of 1-hydroxycarbonyl-6-(piperidin-1-yl)pyrene (3)

1-Bromo-6-(piperidin-1-yl)pyrene (2.0 g, 5.5 mmol) and anhydrous THF (30 mL) were placed in a 100-mL two-necked flask under nitrogen. Then *n*-BuLi (2.6 mL, 6.7 mmol) was added to the solution at -78 °C, to lithiate **2**. After stirring for 30 minutes,  $CO_2$  was bubbled into the solution three times using a balloon. The mixture was then allowed to be gradually warmed to r.t., and stirred for 12 h. Subsequently, the mixture was quenched with water and organic layer was extracted by EtOAc. The solvent was removed *in vacuo*. Then, the residue was solved in THF and reprecipitated into hexane

to afford yellow powder. (820 mg, 45 %). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  13.2 (s, 1H), 9.07 (d, J = 9.3 Hz, 1H), 8.54 (d, J = 8.1 Hz, 1H), 8.46 (d, J = 9.3Hz, 1H), 8.31 (d, J = 8.1Hz, 1H), 8.27-8.20 (m, 3H), 7.87 (d, J = 8.4 Hz, 1H), 3.19 (m, 4H), 1.92-1.85 (quint, J = 5.4 Hz, 4H), 1.68 (m, 2H)

#### Synthesis of ethyl 4-(6-(piperidin-1-yl)pyrene-1-carboxamido)butanoate (4)

Hydroxycarbonyl-6-(piperidin-1-yl)pyrene (0.72 g, 2.2 mmol), DCC (0.54 g, 2.6 mmol), ethyl 4-aminobutyrate hydrochloride (0.55 g, 3.3 mmol) and anhydrous THF (50 mL) were placed in a 100-mL two-necked flask under nitrogen and stirred at 0 °C at room temperature for 16 h. Then the mixture was filtered and the solvent was evaporated. The residue was subjected to silica column chromatography using ethyl chloroform/hexane = 1:1. Subsequently, the mixture was recrystallized from EtOAc/EtOH to obtain yellowish powder. (700 mg, 72 %). Mp 159.5-162.3 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.47 (d, *J* = 9.3 Hz, 1H), 8.41 (d, *J* = 9.3 Hz, 1H), 8.14 (d, *J* = 8.1 Hz, 1H), 8.10-8.02 (m, 4H), 7.76 (d, *J* = 8.1Hz, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.71-3.64 (m, 2H), 3.22 (brs, 4H), 2.52 (t, *J* = 7.2 Hz, 2H), 2.07 (tt, *J* = 7.0 Hz, 7.1 Hz, 2H), 1.94 (m, 4H), 1.72 (brs, 2H), 1.24 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.8, 170.8, 150.3, 133.2, 130.7, 129.5, 129.1, 126.9, 126.6, 126.4, 126.1, 125.9, 125.2, 124.9, 124.0, 122.8, 117.9, 77.7, 61.0, 55.5, 40.1, 32.3, 27.1, 25.2, 25.0, 14.6; FT-IR (KBr) 1726 cm<sup>-1</sup>, 1621 cm<sup>-1</sup>; MS (FAB) Calcd for C<sub>28</sub>H<sub>30</sub>N<sub>2</sub>O<sub>3</sub>:442.2256, Found: 442.2256 ([M]<sup>+</sup>).

#### Synthesis of 4-(6-(piperidin-1-yl)pyrene-1-carboxamido)butanoic acid (PSAC)

The mixture of compound **4** (200 mg, 0.45 mmol) and KOH aq. (25 mg, 0.45 mmol) in THF (20 mL) was stirred at room temperature for overnight. Then, pH was neutralized by dropping 2M HCl aq. The organic layer was extracted with ethylacetate and chloroform, and then was washed with brine. After the solvent was removed *in vacuo*, the residue was recrystalized from CH<sub>2</sub>Cl<sub>2</sub> / Hexane to afford yellow powder. (36 mg, 19 %). Mp 216.0–217.5 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.51 (d, *J* = 9.1 Hz, 1H), 8.41 (d, *J* = 9.2 Hz, 1H), 8.12 (d, *J* = 8.3 Hz, 4H), 8.08-8.00 (m, 4H), 7.75 (d, *J* = 8.2 Hz, 1H), 6.25 (m, 1H), 3.72-3.66 (m, 2H), 3.24-3.21 (m, 4H), 2.56 (t, *J* = 7.1 Hz, 2H), 2.08 (tt, *J* = 7.1 Hz, 6.7 Hz, 2H), 1.94 (tt, *J* = 5.6 Hz, 4.9 Hz, 4H), 1.76-1.69 (m, 2H) ; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.2, 170.0, 150.2, 132.6, 132.4, 129.1, 129.0, 127.2, 127.1, 126.9, 126.1, 125.9, 125.3, 124.8, 124.6, 124.5, 123.5, 118.6, 55.4, 39.6, 32.1, 27.1,

25.5, 24.9; FT-IR (KBr) 3326 cm<sup>-1</sup>, 1626 cm<sup>-1</sup>; MS (FAB) Calcd for  $C_{26}H_{26}N_2O_3$ :414.1943, Found: 414.1945 ([M]<sup>+</sup>).

#### Synthesis of *N*-butylpyrene-6-(piperidin-1-yl)-1-carboxamide (PSA)

Compound 3 (0.17 g, 0.52 mmol), oxalyldichloride (0.45 mL, 5.2 mmol), 3 drops of DMF and 10 mL of CH<sub>2</sub>Cl<sub>2</sub> were placed in a 50-mL two-necked flask under nitrogen and stirred for 3 hours to afford acid chloride. Subsequently excess oxalylchloride and solvent were removed in vacuo, then anhydrous CH<sub>2</sub>Cl<sub>2</sub> (10 mL) were added again and the mixture was cooled to 0 °C. Next, triethyl amine (0.22 mL, 1.5 mmol), and nbutylamine (0.15mL, 1.5 mmol) was added to the mixture and was then allowed to be gradually warmed to room temperature. The mixture was stirred overnight. The organic layer was washed with brine. It was dried over MgSO<sub>4</sub> and then evaporated in vacuo. The residue was subjected to silica column chromatography using ethyl acetate/hexane = 1:5. Subsequent recrystallization from hexane afforded PSA as a yellow solid (40 mg, 20%). Mp 216.0–217.0 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.46 (d, J = 9.4 Hz, 1H), 8.39 (d, J = 9.2 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 8.07-8.01 (m, 4H), 7.75 (d, J = 8.4Hz, 1H), 6.08 (t, J = 5.2 Hz, 1H), 3.64-3.59 (m, 2H), 3.21 (brs, 4H), 1.93 (tt, J = 5.4 Hz, 5.6 Hz, 4H), 1.73-1.66 (m, 2H), 1.49 (tq, J = 7.44 Hz, 7.44 Hz, 2H), 1.01 (t, J = 7.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 214.5, 170.2, 149.9, 132.7, 130.8, 128.6, 126.5, 126.2, 126.0, 125.7, 124.9, 124.5, 124.4, 123.6, 122.4, 117.5, 77.2, 76.9, 55.1, 49.9, 40.0, 31.8, 26.7, 24.5, 20.2, 13.8; FT-IR (KBr) 1617 cm<sup>-1</sup>; MS (FAB) Calcd for C<sub>26</sub>H<sub>28</sub>N<sub>2</sub>O: 384.2202, Found: 384.2206 ([M]<sup>+</sup>).

#### Synthesis of *N*,*N*-Diethylpyrene-6-(piperidin-1-yl)-1-carboxamide (PTA)

1-Bromo-6-(piperidin-1-yl)pyrene (2) (0.3 g, 0.82 mmol) and anhydrous THF (10 mL) were placed in a 50-mL two-necked flask under nitrogen. Then *n*-BuLi (0.083 g, 0.99 mmol) was added to the solution at -78 °C, to lithiate 2. After stirring for 30 minutes, *N*,*N*-diethylcarbomoyl chloride (0.13 mL, 0.99 mmol) was added into the solution. The mixture was then allowed to be gradually warmed to room temperature and stirred overnight. The reaction was quenched with small portion of water, then THF was removed *in vacuo*. To the residue chloroform was added and then the organic layer was washed with brine. The organic layer was dried over MgSO<sub>4</sub> and the solvent was

evaporated *in vacuo*. The residue was subjected to silica column chromatography using ethyl acetate/hexane = 1:5. Subsequent recrystallization in hexane and **PTA** was obtained (81 mg, 25%). Mp 157.8–159.4 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.44 (d, *J* = 9.5 Hz, 1H), 8.13-8.11 (m, 2H), 8.05-8.00 (m, 2H), 7.88-7.84 (m, 2H), 7.74 (d, *J* = 8.3 Hz, 1H), 3.93-3.89 (m, 1H), 3.65-3.61 (m, 1H), 3.20-3.09 (m, 6H), 1.92 (tt, *J* = 5.3 Hz, 5.1Hz, 4H), 1.69 (m, 2H), 1.43 (t, *J* = 7.1 Hz, 3H), 0.97 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  170.9, 150.1, 149.5, 131.6, 131.4, 128.5, 127.7, 126.1, 125.9, 125.8, 125.2, 124.9, 124.0, 123.9, 123.4, 122.0, 117.4, 64.4, 55.1, 50.7, 43.2, 39.2, 26.7, 24.5, 14.2, 13.6, 13.2 FT-IR (KBr) 1617 cm<sup>-1</sup> MS (FAB) Calcd for C<sub>26</sub>H<sub>28</sub>N<sub>2</sub>O: 384.2202, Found: 384.2211 ([M]<sup>+</sup>). Anal. Calcd for C<sub>26</sub>H<sub>28</sub>N<sub>2</sub>O: C, 81.21; H, 7.34; N, 7.29. Found: C, 80.86; H, 7.30; N, 7.16.

# B. <sup>1</sup>H and <sup>13</sup>C NMR Spectra



Fig. S1 <sup>1</sup>H and <sup>13</sup>C NMR spectra of PSA (CDCl<sub>3</sub>, r.t.).



Fig. S2 <sup>1</sup>H and <sup>13</sup>C NMR spectra of PTA (CDCl<sub>3</sub>, r.t.).



Fig. S3 <sup>1</sup>H and <sup>13</sup>C NMR spectra of compound 4 (CDCl<sub>3</sub>, r.t.).



**Fig. S4** <sup>1</sup>H NMR spectra (CDCl<sub>3</sub>, 50 °C) and 13C NMR spectra (DMSO, r.t.) of **PSAC**.

## C. Examination of water solubility of PSAC

**PSAC** was dissolved in THF to prepare the stock solution (10<sup>-3</sup>  $\mu$ M). To the H<sub>2</sub>O in 10 mL of measuring flask was added small amount of stock solution to afford the diluted **PSAC** water solution in the range between 1~10  $\mu$ M. In this region, fluorescence intensities of **PSAC** were proportional to the dye concentration, and the measured  $\Phi_{FL}$  of **PSAC** in 5  $\mu$ M was 97 %, indicating **PSAC** was not precipitated and soluble in this range where the measurement of fluorescence properties can be carried out correctly.



Fig. S5 Plots of fluorescence intensity of PSAC monitored at 539 nm against dye concentration in H<sub>2</sub>O ( $r^2 = 0.99$ ).

# D. Detailed photophysical data of PSA and PTA



**Fig. S6** Normalized absorption spectra of **PSA** in solvents of different polarities (room temperature).



**Fig. S7** Normalized fluorescence spectra of **PSA** in solvents of different polarities ( $\lambda_{ex} = \lambda_{abs, max}$ , Optical Density (O.D.) = 0.1, room temperature).



Fig. S8 Fluorescence decay profiles for PSA in several solvents of different polarities ( $\lambda_{ex} = 343$  nm, monitored at  $\lambda_{em, max}$ , 5000 counts).



**Fig. S9** Normalized absorption spectra of **PTA** in solvents of different polarities (room temperature).



**Fig. S10** Normalized fluorescence spectra of **PTA** in organic solvents of different polarities ( $\lambda_{ex} = \lambda_{abs, max}$ , Optical Density (O.D.) = 0.1, room temperature).



Fig. S11 Fluorescence decay profiles for PTA in several solvents of different polarities ( $\lambda_{ex} = 343$  nm, monitored at  $\lambda_{em, max}$ , 5000 counts).

| Solvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Δf    | λ <sub>ab</sub><br>[r | s, max<br>1m] | λ <sub>em</sub><br>[n | max<br>m] | ¢<br>[% | Դ <sub>ԲL</sub><br>%] | ſr    | τ<br>is] | k<br>[10 | f <sup>*</sup><br>7 s <sup>-1</sup> ] | $k_{1}$ [10 <sup>7</sup> | "*<br>s-1] |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|---------------|-----------------------|-----------|---------|-----------------------|-------|----------|----------|---------------------------------------|--------------------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5     | PSA                   | РТА           | PSA                   | РТА       | PSA     | РТА                   | PSA   | РТА      | PSA      | РТА                                   | PSA                      | РТА        |
| Hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000 | 371                   | 359           | 446                   | 428       | 97      | 66                    | 2.8   | 2.4      | 0.346    | 0.275                                 | 0.011                    | 0.142      |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.013 | 376                   | 363           | 469                   | 446       | 95      | 85                    | 3.5   | 3.4      | 0.275    | 0.252                                 | 0.014                    | 0.045      |
| Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.020 | 373                   | 362           | 471                   | 454       | 95      | 92                    | 4.2   | 3.9      | 0.225    | 0.237                                 | 0.012                    | 0.021      |
| THF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.210 | 372                   | 360           | 474                   | 455       | 94      | 81                    | 3.7   | 4.0      | 0.258    | 0.203                                 | 0.016                    | 0.048      |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.148 | 376                   | 373           | 485                   | 465       | 91      | 52                    | 3.9   | 3.4      | 0.236    | 0.153                                 | 0.023                    | 0.142      |
| DCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.217 | 378                   | 372           | 488                   | 456       | 99      | 83                    | 4.2   | 3.9      | 0.236    | 0.215                                 | 0.002                    | 0.044      |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.284 | 372                   | 361           | 480                   | 471       | 93      | 94                    | 3.9   | 4.0      | 0.237    | 0.235                                 | 0.018                    | 0.015      |
| DMF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.274 | 375                   | 371           | 495                   | 474       | 93      | 83                    | 4.5   | 4.2      | 0.206    | 0.200                                 | 0.016                    | 0.041      |
| DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.263 | 376                   | 374           | 500                   | 482       | 88      | 85                    | 4.5   | 4.5      | 0.196    | 0.190                                 | 0.027                    | 0.034      |
| Acetonitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.305 | 373                   | 363           | 498                   | 472       | 95      | 89                    | 4.3   | 4.3      | 0.221    | 0.206                                 | 0.012                    | 0.026      |
| Ethanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.289 | 372                   | 362           | 500                   | 485       | 99      | 91                    | 4.2   | 4.5      | 0.235    | 0.202                                 | 0.002                    | 0.020      |
| Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.309 | 372                   | 362           | 510                   | 487       | 93      | 83                    | 4.5   | 4.2      | 0.209    | 0.198                                 | 0.016                    | 0.040      |
| TFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.280 | 363                   | 357           | 528                   | 516       | 98      | 97                    | 5.6   | 5.6      | 0.174    | 0.173                                 | 0.004                    | 0.005      |
| * $k_{\rm f}$ and $k_{\rm nr}$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the r | ate o                 | consta        | nst o                 | of rad    | diativ  | e and                 | d nor | nradia   | ative    | decay                                 | , resp                   | ectively   |
| Assuming a single emission state, $k_{\rm f}$ and $k_{\rm nr}$ are defined as follow; $k_{\rm f} = \Phi_{\rm FL} / \tau$ , $k_{\rm nr} = (1 - 1)^{-1} e^{-1} e$ |       |                       |               |                       |           |         |                       |       |          |          |                                       |                          |            |

 Table S1. Spectroscopic parameter of PSA and PTA in organic solvents with different polarities.

 ${\it P}_{
m FL}) \ / \ au$ 

## E. Detailed photophysical data of PSAC



**Fig. S12** Normalized absorption spectra of **PSAC** in solvents of different polarities (room temperature).



**Fig. S13** Normalized fluorescence spectra of **PSAC** in organic solvents of different polarities ( $\lambda_{ex} = \lambda_{abs, max}$ , Optical Density (O.D.) = 0.1, room temperature).



Fig. S14 Fluorescence decay profiles for PSAC in several solvents of different polarities ( $\lambda_{ex} = 343$  nm, monitored at  $\lambda_{em, max}$ , 5000 counts).

| 500          | several solvents with different polarities. |                      |                          |                 |      |                         |                                    |  |  |  |
|--------------|---------------------------------------------|----------------------|--------------------------|-----------------|------|-------------------------|------------------------------------|--|--|--|
| Solvent      | Λf                                          | $\lambda_{abs},$ max | λ <sub>em</sub> ,<br>max | $arPsi_{ m FL}$ | τ    | $k_{ m f}$              | $k_{ m nr}$                        |  |  |  |
|              | <i>j</i>                                    | [nm]                 | [nm]                     | [%]             | [ns] | $[10^7 \text{ s}^{-1}]$ | [10 <sup>7</sup> s <sup>-1</sup> ] |  |  |  |
| Hexane*      | 0.000                                       | 371                  | 446                      | -               | -    | -                       | -                                  |  |  |  |
| Toluene      | 0.013                                       | 377                  | 473                      | >99             | 3.2  | 0.307                   | 0.0031                             |  |  |  |
| Dioxane      | 0.020                                       | 373                  | 473                      | >99             | 3.9  | 0.252                   | 0.0025                             |  |  |  |
| THF          | 0.210                                       | 372                  | 480                      | >99             | 3.9  | 0.253                   | 0.0026                             |  |  |  |
| Chloroform   | 0.148                                       | 380                  | 488                      | >99             | 3.7  | 0.265                   | 0.0027                             |  |  |  |
| DCM          | 0.217                                       | 381                  | 497                      | >99             | 4.1  | 0.241                   | 0.0024                             |  |  |  |
| Acetone      | 0.284                                       | 373                  | 490                      | 99              | 3.9  | 0.257                   | 0.0026                             |  |  |  |
| DMF          | 0.274                                       | 374                  | 489                      | 98              | 4.2  | 0.236                   | 0.0048                             |  |  |  |
| DMSO         | 0.263                                       | 377                  | 501                      | 96              | 4.4  | 0.217                   | 0.009                              |  |  |  |
| Acetonitrile | 0.305                                       | 374                  | 493                      | >99             | 4.1  | 0.243                   | 0.0025                             |  |  |  |
| EtOH         | 0.289                                       | 372                  | 500                      | 98              | 4.5  | 0.216                   | 0.0044                             |  |  |  |
| MeOH         | 0.309                                       | 371                  | 508                      | >99             | 4.2  | 0.233                   | 0.0024                             |  |  |  |
| TFE          | 0.280                                       | 360                  | 529                      | >99             | 5.3  | 0.189                   | 0.0019                             |  |  |  |
| $H_2O$       | 0.320                                       | 360                  | 538                      | 97              | 5.3  | 0.182                   | 0.0056                             |  |  |  |
|              |                                             |                      |                          |                 |      |                         |                                    |  |  |  |

**Table S2.** Spectroscopic parameter of **PSAC** inseveral solvents with different polarities.

\*Hexane: The  $\Phi_{FL}$  value of **PSAC** in hexane was not obtained because of low solubility that induced the precipitation of **PSAC** before the measurement.

#### **F.** Lippert Mataga plots

The change in dipole moment ( $\mu_e - \mu_g$ ) for **PSA**, **PTA** and **PSAC** were estimated by plotting the Lippert equation defined as below:

 $(v_{abs} - v_{fl}) = 2(\mu_e - \mu_g)^2 \Delta f / hca^3, \Delta f = (\varepsilon - 1)/(2\varepsilon + 1) - (n^2 - 1)/(2n^2 + 1)$ 

In this equation,  $v_{abs}$  and  $v_{fl}$  are the wavenumbers of the absorption and fluorescence;  $\mu_e$ and  $\mu_g$  are the excited and ground state dipole moments; *c* is the speed of light; *h* is Planck's constant; *a* is the radius of the cavity; *n* and  $\varepsilon$  are the refractive index and dielectric constant, respectively; the orientation polarizability function were calculated by using known values of *n* and  $\varepsilon$ . The cavity radius for all compounds *a* were taken as 4.82 based on optimized structures in the ground states caluclated by DFT (wB97X-D/6-31G(d,p)). The data in hydrogen-bonding donor solvents were excluded to avoid specific effect between solute-solvent interactions.



Fig. S15 Stokes shifts ( $v_{abs} - v_{fl}$ ) of PSA, PTA and PSAC vs the orientation polarizability function ( $\Delta f$ ) (Lippert-Mataga plot). The results of the linear least-squares fit:  $v_{abs} - v_{fl} = 5146.2 + 4802.9\Delta f$  ( $r^2 = 0.80$ ) for PSA,  $5103.3 + 4593.3\Delta f$  ( $r^2 = 0.81$ ) for PTA, and  $5291.4 + 4432.4\Delta f$  ( $r^2 = 0.80$ ) for PSAC.

# G. Fluorescence behavior of PA in the presence of H<sub>2</sub>O



**Fig. S16** Fluorescence spectra of **PA** in the mixture of THF and H<sub>2</sub>O ( $\lambda_{ex} = \lambda_{abs, max}$ , dye concentration: 2.5 × 10<sup>-6</sup> M, room temperature).

# H. DFT/TDDFT calculations



Fig. S17 The MOs of PSA calculated by DFT ( $\omega$ B97X-D/6-31G(d,p)).



**Fig. S18** The MOs of **PTA** calculated by DFT (ωB97X-D/6-31G(d,p)).

| u   | $\frac{1}{1000} = \frac{1}{1000} = 1$ |                        |                     |                             |              |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|-----------------------------|--------------|--|--|--|
|     | State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Excitation energy [eV] | Oscillator strength | Main transition orbital     | Contribution |  |  |  |
| PSA | T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.98                   |                     | HOMO → LUMO                 | 0.84         |  |  |  |
|     | T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.57                   |                     | HOMO $\rightarrow$ LUMO+1   | 1            |  |  |  |
|     | Т3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.63                   |                     | HOMO-5 → LUMO               | 0.29         |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO-3 $\rightarrow$ LUMO   | 0.17         |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO $\rightarrow$ LUMO+2   | 0.48         |  |  |  |
|     | T4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.68                   |                     | HOMO-6 $\rightarrow$ LUMO   | 0.17         |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO-1 $\rightarrow$ LUMO   | 0.49         |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO $\rightarrow$ LUMO+3   | 0.31         |  |  |  |
|     | <b>S</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.69                   | 0.5523              | $HOMO \rightarrow LUMO$     | 0.97         |  |  |  |
|     | T5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.82                   |                     | HOMO-2 $\rightarrow$ LUMO   | 0.43         |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO-1 $\rightarrow$ LUMO   | 0.41         |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO $\rightarrow$ LUMO+3   | 0.1          |  |  |  |
|     | S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.93                   | 0.0109              | HOMO-1 $\rightarrow$ LUMO   | 0.3          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO $\rightarrow$ LUMO+1   | 0.61         |  |  |  |
|     | T6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.08                   |                     | HOMO-2 $\rightarrow$ LUMO+1 | 0.21         |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO-1 → LUMO+1             | 0.7          |  |  |  |
| РТА | T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                      |                     | HOMO → LUMO                 | 0.82         |  |  |  |
|     | T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.59                   |                     | HOMO $\rightarrow$ LUMO+1   | 0.9          |  |  |  |
|     | Т3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.64                   |                     | HOMO-5 → LUMO               | 0.39         |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO $\rightarrow$ LUMO+1   | 0.11         |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO $\rightarrow$ LUMO+2   | 0.47         |  |  |  |
|     | T4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.73                   |                     | HOMO-6 → LUMO               | 0.2          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO-2 → LUMO               | 0.12         |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO-1 $\rightarrow$ LUMO   | 0.34         |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO $\rightarrow$ LUMO+3   | 0.34         |  |  |  |
|     | <b>S</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.75                   | 0.4985              | $HOMO \rightarrow LUMO$     | 0.95         |  |  |  |
|     | T5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.84                   |                     | HOMO-2 $\rightarrow$ LUMO   | 0.28         |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO-1 $\rightarrow$ LUMO   | 0.59         |  |  |  |
|     | S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.96                   | 0.0301              | HOMO-1 $\rightarrow$ LUMO   | 0.3          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | HOMO $\rightarrow$ LUMO+1   | 0.62         |  |  |  |
|     | T6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.08                   |                     | HOMO-1 $\rightarrow$ LUMO+1 | 0.74         |  |  |  |

**Table S3.** Excitation energy, osillator strength, main transition orbital, and their calculated for **PSA** and **PTA** using TD-DFT ( $\omega$ B97X-D/6-31G(d,p))

**Table S4.** Atom coordinates and absolte energies of **PSA** and**PTA** in theoretical calculations.

| <b>I I A</b> III theoretical calculations.             |               |                        |           |           |  |  |  |
|--------------------------------------------------------|---------------|------------------------|-----------|-----------|--|--|--|
| <b>PSA</b> (ground): $E(RwB97XD) = -1192.0612517$ A.U. |               |                        |           |           |  |  |  |
| Contor number                                          | A             | Coordinate (Angstroms) |           |           |  |  |  |
|                                                        | Atomic number | Х                      | Y         | Ζ         |  |  |  |
| 1                                                      | 6             | 2.382305               | -1.701537 | -0.244465 |  |  |  |
| 2                                                      | 6             | 1.15418                | -2.336783 | -0.317539 |  |  |  |
| 3                                                      | 6             | -0.029017              | -1.595109 | -0.274021 |  |  |  |
| 4                                                      | 6             | 0.042634               | -0.183095 | -0.135496 |  |  |  |
| 5                                                      | 6             | 1.306874               | 0.467977  | -0.049065 |  |  |  |
| 6                                                      | 6             | 2.477879               | -0.313701 | -0.118512 |  |  |  |
| 7                                                      | 6             | -1.318301              | -2.220241 | -0.389676 |  |  |  |

| 8  | 6 | -1.166962 | 0.581312  | -0.083617 |
|----|---|-----------|-----------|-----------|
| 9  | 6 | -2.426601 | -0.069144 | -0.151279 |
| 10 | 6 | -2.458677 | -1.49469  | -0.337775 |
| 11 | 6 | -3.612096 | 0.693335  | -0.05803  |
| 12 | 6 | -3.522092 | 2.084383  | 0.025151  |
| 13 | 6 | -2.290491 | 2.722694  | 0.05535   |
| 14 | 6 | -1.100529 | 1.994253  | 0.024047  |
| 15 | 6 | 0.188323  | 2.623329  | 0.099193  |
| 16 | 6 | 1.333917  | 1.905299  | 0.073473  |
| 17 | 1 | 2.294804  | 2.394322  | 0.164801  |
| 18 | 1 | 0.226971  | 3.705402  | 0.189376  |
| 19 | 1 | -1.356375 | -3.295179 | -0.541625 |
| 20 | 1 | 3.290912  | -2.296656 | -0.256159 |
| 21 | 1 | 1.103502  | -3.417904 | -0.407105 |
| 22 | 1 | -3.425834 | -1.967719 | -0.466914 |
| 23 | 1 | -4.427281 | 2.678332  | 0.087019  |
| 24 | 1 | -2.247129 | 3.805716  | 0.129772  |
| 25 | 6 | -5.173027 | -0.642693 | 1.222679  |
| 26 | 6 | -6.002106 | 0.739463  | -0.581062 |
| 27 | 6 | -6.300095 | -1.653645 | 1.035844  |
| 28 | 1 | -5.47001  | 0.110421  | 1.97681   |
| 29 | 1 | -4.273988 | -1.135925 | 1.599089  |
| 30 | 6 | -7.152322 | -0.229296 | -0.848935 |
| 31 | 1 | -6.353571 | 1.521475  | 0.11977   |
| 32 | 1 | -5.698598 | 1.238324  | -1.505765 |
| 33 | 6 | -7.532932 | -0.983964 | 0.426091  |
| 34 | 1 | -6.543669 | -2.110394 | 2.000765  |
| 35 | 1 | -5.949031 | -2.453468 | 0.372261  |
| 36 | 1 | -8.011321 | 0.325347  | -1.240903 |
| 37 | 1 | -6.836855 | -0.940843 | -1.620707 |
| 38 | 1 | -8.312006 | -1.724266 | 0.218468  |
| 39 | 1 | -7.952427 | -0.274472 | 1.15236   |
| 40 | 7 | -4.855553 | 0.01385   | -0.050193 |
| 41 | 6 | 3.843079  | 0.311944  | -0.036758 |
| 42 | 8 | 4.139104  | 1.192091  | 0.761805  |
| 43 | 7 | 4.748388  | -0.185435 | -0.925746 |
| 44 | 1 | 4.441611  | -0.854841 | -1.611303 |
| 45 | 6 | 6.129919  | 0.257943  | -0.92472  |
| 46 | 1 | 6.530931  | 0.122788  | -1.934581 |
| 47 | 1 | 6.134543  | 1.329319  | -0.702439 |
| 48 | 6 | 6.992312  | -0.481004 | 0.098211  |
| 49 | 1 | 6.962567  | -1.558267 | -0.111758 |
| 50 | 1 | 6.54663   | -0.33492  | 1.088577  |
| 51 | 6 | 8.439954  | 0.007019  | 0.102498  |
| 52 | 1 | 8.455603  | 1.084413  | 0.309013  |
| 53 | 1 | 8.872324  | -0.120632 | -0.898708 |
| 54 | 6 | 9.30416   | -0.722228 | 1.128772  |
| 55 | 1 | 9.329293  | -1.798418 | 0.927459  |
| 56 | 1 | 10.334326 | -0.355174 | 1.116929  |

| r IA (§       | <b>FIA</b> (ground). E(KWB9/AD) - |           | 1192.0300903 A.U. |           |  |  |  |
|---------------|-----------------------------------|-----------|-------------------|-----------|--|--|--|
| Center number | Atomic number                     | C001      | unate (Angstr     | oms)<br>Z |  |  |  |
| 1             | 1                                 | X         | Y                 | L         |  |  |  |
| 1             | 6                                 | -2.594227 | -2.296203         | -0.405813 |  |  |  |
| 2             | 6                                 | -1.313265 | -2.786957         | -0.208128 |  |  |  |
| 3             | 6                                 | -0.224574 | -1.915234         | -0.106777 |  |  |  |
| 4             | 6                                 | -0.445438 | -0.517207         | -0.215458 |  |  |  |
| 5             | 6                                 | -1.76338  | -0.017152         | -0.403154 |  |  |  |
| 6             | 6                                 | -2.831689 | -0.925231         | -0.481782 |  |  |  |
| 7             | 6                                 | 1.113217  | -2.387574         | 0.126138  |  |  |  |
| 8             | 6                                 | 0.660324  | 0.387123          | -0.131987 |  |  |  |
| 9             | 6                                 | 1.975736  | -0.113569         | 0.04546   |  |  |  |
| 10            | 6                                 | 2.158477  | -1.531888         | 0.20382   |  |  |  |
| 11            | 6                                 | 3.063777  | 0.787178          | 0.08726   |  |  |  |
| 12            | 6                                 | 2.814312  | 2.159787          | 0.026028  |  |  |  |
| 13            | 6                                 | 1.523193  | 2.650289          | -0.111433 |  |  |  |
| 14            | 6                                 | 0.432689  | 1.786164          | -0.213696 |  |  |  |
| 15            | 6                                 | -0.911032 | 2.262741          | -0.399085 |  |  |  |
| 16            | 6                                 | -1.955523 | 1.409513          | -0.496203 |  |  |  |
| 17            | 1                                 | -2.960729 | 1.790682          | -0.646218 |  |  |  |
| 18            | 1                                 | -1.071333 | 3.33499           | -0.469385 |  |  |  |
| 19            | 1                                 | 1.26622   | -3.455029         | 0.257263  |  |  |  |
| 20            | 1                                 | -3.430564 | -2.981204         | -0.504361 |  |  |  |
| 21            | 1                                 | -1.146122 | -3.857576         | -0.134686 |  |  |  |
| 22            | 1                                 | 3.157774  | -1.893529         | 0.418906  |  |  |  |
| 23            | 1                                 | 3.642991  | 2.858034          | 0.066601  |  |  |  |
| 24            | 1                                 | 1.358038  | 3.722771          | -0.165615 |  |  |  |
| 25            | 6                                 | 4.888784  | -0.319244         | -1.056099 |  |  |  |
| 26            | 6                                 | 5.370434  | 1.100971          | 0.842033  |  |  |  |
| 27            | 6                                 | 6.105182  | -1.195964         | -0.775303 |  |  |  |
| 28            | 1                                 | 5.164935  | 0.484059          | -1.764892 |  |  |  |
| 29            | 1                                 | 4.095405  | -0.903701         | -1.527269 |  |  |  |
| 30            | 6                                 | 6.597035  | 0.2666            | 1.206095  |  |  |  |
| 31            | 1                                 | 5.691302  | 1.937907          | 0.191784  |  |  |  |
| 32            | 1                                 | 4.922732  | 1.534912          | 1.740572  |  |  |  |
| 33            | 6                                 | 7.185258  | -0.403257         | -0.037037 |  |  |  |
| 34            | 1                                 | 6.492636  | -1.594459         | -1.718712 |  |  |  |
| 35            | 1                                 | 5.79012   | -2.049257         | -0.162228 |  |  |  |
| 36            | 1                                 | 7.342233  | 0.907134          | 1.689349  |  |  |  |
| 37            | 1                                 | 6.296177  | -0.497841         | 1.931716  |  |  |  |
| 38            | 1                                 | 8.023572  | -1.052445         | 0.234711  |  |  |  |
| 39            | 1                                 | 7.584795  | 0.369962          | -0.70737  |  |  |  |
| 40            | 7                                 | 4.37479   | 0.260925          | 0.189588  |  |  |  |
| 41            | 6                                 | -4.244598 | -0.469614         | -0.747426 |  |  |  |
| 42            | 8                                 | -4.756408 | -0.654603         | -1.844133 |  |  |  |
| 43            | 7                                 | -4.915227 | 0.134513          | 0.277517  |  |  |  |
| 44            | 6                                 | -6.283983 | 0.57347           | 0.025487  |  |  |  |
|               |                                   |           |                   |           |  |  |  |

**PTA** (ground): F(RwB97XD) = -1192.0566963 A U

| 45 | 1 | -6.724142 | -0.102166 | -0.710051 |
|----|---|-----------|-----------|-----------|
| 46 | 1 | -6.848072 | 0.47489   | 0.958671  |
| 47 | 6 | -6.334609 | 2.009227  | -0.487762 |
| 48 | 1 | -5.805351 | 2.078248  | -1.441532 |
| 49 | 1 | -5.867449 | 2.698846  | 0.222924  |
| 50 | 1 | -7.369002 | 2.329082  | -0.644003 |
| 51 | 6 | -4.409586 | 0.239386  | 1.641787  |
| 52 | 1 | -4.835933 | 1.148936  | 2.078189  |
| 53 | 1 | -3.328895 | 0.384564  | 1.620819  |
| 54 | 6 | -4.757052 | -0.977055 | 2.495633  |
| 55 | 1 | -4.408131 | -0.837656 | 3.522917  |
| 56 | 1 | -5.837635 | -1.147417 | 2.521488  |
| 57 | 1 | -4.278028 | -1.871771 | 2.088161  |

#### I. Supplementary references

[1] J. R. Lakowicz, *Principles of Fluorescence Spectroscopy Third Edition*, Springer+Business Media, LLC; New York, 2006.

[2] a) J.-D. Chai, M. Head-Gordon, *Phys. Chem. Chem. Phys.* 2008, 10, 6615-6620; b)
R. Ditchfield, W. J. Hehre, J. A. Pople, *J. Chem. Phys.* 1971, 54, 724-728; c) W. J.
Hehre, R. Ditchfield, J. A. Pople, *J. Chem. Phys.* 1972, 56, 2257-2261; d) P. C.
Hariharan, J. A. Pople, *Theor. Chem. Acc.* 1973, 28, 213-222: e) P. C. Hariharan, J. A.
Pople, *Mol. Phys.* 1974, 27, 209-214.

[3] a) N. Mardirossian, J. A. Parkhill, M. Head-Gordon, *Phys. Chem. Chem. Phys.* 2011, *13*, 19325-19337; b) D. Jacquemin, E. A. Perpète, I. Ciofini, C. Adamo, *Theor. Chem. Acc.* 2011, *128*, 127-136.

[4] Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.