Lead ions removal from aqueous solution in a novel bioelectrochemical system with stainless steel cathode

Tao $\mathrm{Bo}^{\text {a, }}{ }^{\text {b }}$, Lixia Zhang ${ }^{\text {a }}$, Xiaoyu Zhu ${ }^{\text {a }}$, Xiaohong $\mathrm{He}^{\text {a }}$, Yong Tao ${ }^{\text {a }}$, Jintao Zhang ${ }^{\text {c }}$, Daping Lia ${ }^{\text {a b,* }}$
${ }^{\text {a Key }}$ Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
${ }^{\mathrm{b}}$ Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, P. R. China
${ }^{\text {cPetroChina Southwest Oil \& Gas field Company, Chengdu 610051, P. R. China }}$
*Corresponding author. Tel.: +86-028-82890211; E-mail address: lidp@cib.ac.cn

Figure captions

Figure A1: the changes of the surfaces of SS. The surfaces of SS were smooth at $\mathrm{BES}_{1}(\mathrm{~A})$ and BES_{0} (C) before reaction. After 3 days, the attachment was adhered to SS symmetrically at $\mathrm{BES}_{1}(\mathrm{~B})$, but there was any change can be observed at $\mathrm{BES}_{0}(\mathrm{D})$.

Figure A2: Product under different ratio of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ to $\mathrm{Na}_{2} \mathrm{CO}_{3}$. (A) the XRD pattern for product when $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was insufficient, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}{ }^{*}: \mathrm{Na}_{2} \mathrm{CO}_{3}{ }^{* *}=5: 3(\mathrm{v} / \mathrm{v})$ and the standard XRD pattern for cerussite $\left(\mathrm{PbCO}_{3}\right.$ (PDF No. 47-1734)); (B) the XRD pattern for product when $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was excess, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}: \mathrm{Na}_{2} \mathrm{CO}_{3}=5: 7(\mathrm{v} / \mathrm{v})$ and the standard XRD pattern for hydrocerussite $\left(\mathrm{Pb}_{3}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{OH})_{2}\right.$ (PDF No. 13-0131)).

* $0.004 \mathrm{~mol} / \mathrm{L} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $4 \mathrm{~g} / \mathrm{L} \mathrm{NaNO}_{3}, \mathrm{pH}=3.7$
** $0.004 \mathrm{~mol} / \mathrm{L} \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{pH}=10.9$

Figure A3: The precipitation of ions with $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$ or $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}$. (A) The color of solution of different compounds. The concentration of all compounds was $1 \mathrm{~g} / \mathrm{L}$. (B) The reaction of $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$ or $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}$ with different ions. $4 \mathrm{~g} / \mathrm{L} \mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$ was added into tube $1,3,5,7,9$, and $11.4 \mathrm{~g} / \mathrm{L} \mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}$ was added into tube $2,4,6,8,10$, and 12 .

Figure A4: Cathode potential with time. The practical cathode potential (black) and theoretical Pb^{2+} reduction potential (red).

Figures

Figure A1

Figure A2

Figure A3

Figure A4

