Lead ions removal from aqueous solution in a novel bioelectrochemical system with stainless steel cathode

Tao Bo^{a, b}, Lixia Zhang^a, Xiaoyu Zhu^a, Xiaohong He^a, Yong Tao^a, Jintao Zhang^c, Daping Li^{a, b,*}

^aKey Laboratory of Environmental and Applied Microbiology, Chengdu Institute of

Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China

^bEnvironmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041,

P. R. China

^cPetroChina Southwest Oil & Gas field Company, Chengdu 610051, P. R. China

*Corresponding author. Tel.: +86-028-82890211; E-mail address: lidp@cib.ac.cn

Figure captions

Figure A1: the changes of the surfaces of SS. The surfaces of SS were smooth at BES_1 (A) and BES_0 (C) before reaction. After 3 days, the attachment was adhered to SS symmetrically at BES_1 (B), but there was any change can be observed at BES_0 (D).

Figure A2: Product under different ratio of $Pb(NO_3)_2$ to Na_2CO_3 . (A) the XRD pattern for product when Na_2CO_3 was insufficient, $Pb(NO_3)_2^*$: $Na_2CO_3^{**} = 5:3$ (v/v) and the standard XRD pattern for cerussite (PbCO₃ (PDF No. 47-1734)); (B) the XRD pattern for product when Na_2CO_3 was excess, $Pb(NO_3)_2$: $Na_2CO_3 = 5:7$ (v/v) and the standard XRD pattern for hydrocerussite (Pb₃(CO₃)₂(OH)₂ (PDF No. 13-0131)).

*0.004 mol/ L Pb(NO₃)₂ and 4 g/L NaNO₃, pH=3.7

**0.004 mol/L Na2CO3, pH=10.9

Figure A3: The precipitation of ions with $Fe(CN)_6^{3-}$ or $Fe(CN)_6^{4-}$. (A) The color of solution of different compounds. The concentration of all compounds was 1 g/L. (B) The reaction of $Fe(CN)_6^{3-}$ or $Fe(CN)_6^{4-}$ with different ions. 4 g/L $Fe(CN)_6^{3-}$ was added into tube 1, 3, 5, 7, 9, and 11. 4 g/L $Fe(CN)_6^{4-}$ was added into tube 2, 4, 6, 8, 10, and 12.

Figure A4: Cathode potential with time. The practical cathode potential (black) and theoretical Pb²⁺ reduction potential (red).

Figures

Figure A1

Figure A2

Figure A3

Figure A4