SUPPORTING INFORMATION

Amphiphobic surfaces from functionalized TiO₂ nanotube arrays

Samira Farsinezhad¹, Prashant R. Waghmare², Benjamin D. Wiltshire,¹ Himani Sharma,¹ Saeid Amiri,³ Sushanta K. Mitra² and Karthik Shankar^{1,4}

¹Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta T6G

2V4, Canada

²Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada

³Wave Control Systems Ltd., 9612-60th Ave. NW, Edmonton AB T6E 0C1

⁴National Institute for Nanotechnology, National Research Council Canada, Edmonton, Alberta T6G

2M9, Canada

CONTENTS:

- 1. Table S1
- 2. Table S2
- 3. Table S3
- 4. Table S4
- 5. Derivation of Equation 6
- 6. Derivation of Equation 8
- 7. Fig. S3
- 8. Fig. S4

Supplementary Table S1: Identification and assignment of XPS peaks obtained from from TiO_2 thin films and nanotubes coated by PFNA and PDPFA monolayers

Samples	Elements	Peak Positions (eV)	Chemical entities	
	(Region)			
	Ti	$458.7 \pm 0.2 \text{ eV} (2p_{3/2})$	TiO ₂	
		$464.5 \pm 0.3 \text{ eV} (2p_{1/2})$		
TiO ₂ –PFNA	0	530.2 eV (O1s)	-0-	
(thin films and nanotubes)	C(1s)	$284.6 \text{ eV} \pm 0.3 \text{ eV}$ (C1s)	graphitic carbon	
	С	$285.0 \pm 0.5 \text{ eV}$	(C-H), sp ³ carbon	
	С	286.4 ± 0.5 eV	(C=O), >C=O	
	С	$288.5 \pm 0.5 \text{ eV}$	COOH + C(O)-OC	
	F	689 ± 0.5 eV	C-F	
	N	400 eV – 402 eV	-CN, N=O, -CONH ₂	
	Ti	$458.7 \pm 0.2 \text{ eV} (2p_{3/2})$	TiO ₂	
		$464.5 \pm 0.3 \text{ eV} (2p_{1/2})$		
	0	530.2 eV (O1s)	-0-	
	C(1s)	$284.6 \text{ eV} \pm 0.3 \text{ eV}$ (C1s)	graphitic carbon	
$TiO_2 - PFDPA$	С	286.4 ± 0.5 eV	(C=O), >C=O	
(thin films and	С	$292 \pm 0.5 \text{ eV}$	CF ₂	
nanotubes)	С	$294 \pm 0.5 \text{ eV}$	CF ₃	
	F	689 ± 0.5 eV	C-F	
	Р	132.4 to 135.8 eV	P-C, P-O	
		(as a function of oxygen		
		environment)		
	N	400 eV - 402 eV	-CN, N=O, -CONH ₂	

Supplementary Table S2: Contact angle (in degrees) for six different liquids on nine different substrates with the standard deviation determined from the average static contact angle. Also listed are the dispersive, polar and hydrogen-bonding components of the surface energy for each surface studied, calculating by the extended Fowkes method using the average contact angles for diiodomethane, ethylene glycol and water; $\gamma_S = \gamma_S^d + \gamma_S^p + \gamma_S^h$.

			יעעמע	1		DENIA	DENIA		L DENDA
	TFF	THEFT	THHEFT	TNAL arge	TNA _{Small}	TNA_{Large}^{TNA}	TNA Small	TNA_{Large}	TNA ^{rr Dra}
Water	23.5	103.9	110.0	< 5	< 5	> 170	> 170	> 170	> 170
	±4.5	±15.5	± 5.91						
Ethylene Glycol	< 10	0.06	77.8	S >	S >	141.18 ± 5.5	140.9 ± 4.5	142.2	149.7
		±2.4	±4.99					± 1.32	± 0.22
Dimethylformamide	< 10	42.8	6.69	<u>5</u> >	S >	114.5	110.7	132.2	140.0
		± 0.92	± 2.58			±5.9	± 2.5	± 0.53	±4.92
Dimethyl sulfoxide	32	42.	68.7	< 5	< 5	125.7	87.8	139.3	145.2
	±2.2	5±4.22	± 4.93			±3.5	± 23.3	± 1.44	± 2.61
Toluene	5 >	64.13 ± 1.29	75.7	S >	S >	105.2	110.8	110.5	120.8
			± 2.46			±0.8	±3.44	± 0.91	±2.17
Diiodomethane	31.3 ± 2.42	110.1	100.3	< 5	< 5	134.5 ± 1.59	140.4	144.6	143.5
		± 3.31	± 1.38				±3.39	±0.38	±0.88
Dispersive									
component of solid									
surface energy - _{Ys} d (mN m ⁻¹)	33.27	1.65	2.92	> 43.12	> 43.12	1.40	0.59	0.30	0.64
Polar component of									
solid surface energy	14.60	15.56	21.05	> 8.36	> 8.36	0.06	0.08	0.24	0.06
Hydrogen-bonding									
component of solid									
surface energy - χ_s^h	27.76	6.22	2.13	> 27.17	> 27.17	< 0.88	< 0.36	< 0.20	< 0.38
		22.22	22.22						
Total solid surface	75.63	23.42	26.10	> 78.65	> 78.65	< 2.35	< 1.03	< 0.74	< 1.07

Supplementary Table S3: Geometric parameters of nanotube-configurations studied here. The geometrical parameters of individual nanotube are obtained from SEM images.

	$TNA_{Larg e}^{PFNA}$	TNA_{Small}^{PFNA}	TNA_{Large}^{PFDPA}	TNA_{Small}^{PFDPA}
d (thickness of wall)	12	15	12	15
nm				
R (outer radius) nm	75	37.5	75	37.5
H (height) m	17.5	6	17.5	6

Supplementary Table S4: Theoretically predicted contact angles (θ) and the difference between the theory and the experimentally observed contact angle($\Delta \theta$). Here it is assumed that the nanotubes behave like a nanorod and there is finite gap between them.

Liquid	TNA	PFNA Larg <i>e</i>	TNA	PFNA Small	TNA	$\mathbf{A}_{Large}^{PFDPA}$	TNA	PFDPA Small
	θ	$\Delta \theta$	θ	$\Delta \theta$	θ	$\Delta \theta$	θ	$\Delta \theta$
Ethylene Glycol	100.95	40.23	102.52	38.38	88.62	53.58	90.57	59.13
Dimethylformamide	62.24	52.26	65.35	45.35	82.19	50.01	84.36	55.64
Dimethyl sulfoxide	62.05	63.65	65.16	22.64	81.23	58.07	83.44	61.76
Toluene	77.62	27.38	79.98	30.82	86.89	28.61	88.90	31.90
Diiodomethane	116.43	18.07	117.61	22.79	107.80	37.20	109.19	34.31
Hexane	62.11	10.69	65.22	28.02	69.83	38.83	72.53	67.53

Derivation of Equation (6):

TiO₂ nanotubes formed by anodization in ethylene glycol-based electrolytes pack in a triangular lattice, whose unit cell is the shaded area shown below in Fig. S1a, which is an equilateral triangle with each side of length $2R_0+s$ where R_0 is the radius of the nanotubes and *s* is the inter-tubular gap. In Fig. S1b, the shaded area indicates the geometric area fraction occupied by TiO₂ nanotubes. From symmetry considerations, each nanotube contributes $1/6^{\text{th}}$ of an annulus. The average value of all the above geometrical parameters, as estimated from scanning electron micrographs, were used to calculate the area fraction parameter f_{sl} .

Figure S1: First scenario considered for the analysis: the unit cell consists of three hollow nanotubes with radius R_0 , wall-thickness *t* and inter-tube spacing *s*

$$f_{sl} = \frac{Area(B)}{Area(A)} = \frac{\frac{\pi}{2} [R_o^2 - (R_o - t)^2]}{\frac{\sqrt{3}}{4} (2R_o + S)^2}$$
(6a)

$$f_{sl} = \frac{\frac{\pi}{2} [R_o^2 - R_o^2 + 2tR_o - t^2]}{\sqrt{3} \times R_o^2 \left(1 + \left(\frac{s}{2R_0}\right) \right)^2} = \frac{\frac{\pi}{2} R_o^2 \left[\frac{2t}{R_0} - \left(\frac{t}{R_0}\right)^2\right]}{\sqrt{3} \times R_o^2 \left(1 + \left(\frac{s}{2R_0}\right) \right)^2}$$
(6b)

$$f_{sl} = \frac{\frac{2t}{R_0} - \left(\frac{t}{R_0}\right)^2}{\frac{2\sqrt{3}}{\pi} \left[1 + \left(\frac{s}{2R_0}\right)^2\right]}$$
(6c)

Derivation of Equation (8):

Here, the area fraction parameter of nanorods arranged in a triangular lattice is sought.

Figure S2: Second scenario considered for the analysis: The nanotubes are considered as solid nanorods of outer radius R_0 and there is a finite gap *s* in between them.

$$f_{sl} = \frac{Area(B)}{Area(A)} = \frac{\frac{\pi}{2}[R_o^2]}{\frac{\sqrt{3}}{4}(2R_0 + S)^2}$$
(8a)
$$f_{sl} = \frac{\frac{\pi}{2}[R_o^2]}{\sqrt{3} \times R_o^2 \left(1 + \left(\frac{S}{2R_0}\right)\right)^2} = \frac{\frac{\pi}{2}[R_o^2]}{\sqrt{3} \times R_o^2 \left(1 + \left(\frac{S}{2R_0}\right)\right)^2}$$
(8b)
$$f_{sl}^{rod} = \frac{\pi}{2\sqrt{3}} \left(1 + \frac{S}{2R_0}\right)^{-2}$$
(8c)

Pre- and Post- Immersion in other solvents – Contact Angle Sustainability

Figure S3: Static contact angles of water on PFDPA-coated (a) large diameter nanotube arrays and (b) small diameter nanotube arrays. Images on left are pre-immersion treatment, on the right are post-immersion treatment in water. The contact angle is unchanged.

Figure S4: Static contact angles of water on PFDPA-coated (a) large diameter nanotube arrays and (b) small diameter nanotube arrays. Images on left are pre-immersion treatment, on the right are post-immersion treatment in ethylene glycol. The contact angle is unchanged.