Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information

List of Contents

- (A) Materials and equipment
- (B) Typical experimental procedure
- (C) Analytical data
- (D) References
- (E) Spectra

(A) Materials and equipment

Reagents were obtained commercially and used as received. Solvents were purified and dried by standard methods. ¹H NMR spectra were recorded on a Bruker-400 NMR spectrometer using TMS as an internal standard. Chemical shift values (δ) are given in ppm. Coupling constants (J) were measured in Hz. GC-MS analyses were performed on a SHIMADZU QP2010. High Resolution mass spectrometer (HRMS) spectra were recorded on a Bruker micrOTOF-Q II analyzer. 200-300 mesh silica gel was used for column chromatography.

(B) Typical experimental procedure

Typical Experimental Procedure for the Synthesis of ketones

An oven-dried Schlenk tube was charged with a magnetic stir-bar, 1,2-diarylalkynes **1** (0.5 mmol), aniline (0.6 mmol), K_2CO_3 (0.5 mmol), $Cu(OAc)_2$ (0.075 mmol), DMSO (3 mL), The tube was sealed, and oxygen was purged through syringe. Reaction was stirred at 120 °C for 16-18 h. After the reaction was finished, the reaction mixture was diluted in 30 mL ethyl acetate, filtered on celite pad. The organic portion was washed with a saturated solution of brine (8 mL), saturated NH₄Cl (8 mL), a saturated solution of brine (8 mL), dried (Na₂SO₄) and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to afford the desired products **2**.

(C) Analytical data

Benzophenone (2a): 1

¹H NMR (400 MHz, CDCl₃) δ : 7.83 (dd, J = 8.0 Hz, J = 1.6 Hz, 4H), 7.61-7,56 (m, 2H), 7.51-7.45 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.7, 137.8, 132.5, 130.2, 128.4; IR (neat cm⁻¹): 1660 (C=O); LRMS (EI 70 ev) m/z (%): 182 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₃H₁₁O (M+H)⁺ 183.0804, found 183.0801.

Phenyl(p-tolyl)methanone (2b): ¹

¹H NMR (400 MHz, CDCl₃) δ : 7.79 (d, J = 7.2 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.59 (t, J = 7.4

Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.4, 143.2, 137.9, 134.8, 132.1, 130.2, 129.8, 128.9, 128.1, 21.6; IR (neat cm⁻¹): 1658 (C=O); LRMS (EI 70 ev) m/z (%): 196 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₄H₁₃O (M+H)⁺ 197.0960, found 197.0963.

(4-Methoxyphenyl)(phenyl)methanone (2c): 1

¹H NMR (400 MHz, CDCl₃) δ : 7.80 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.51-7.45 (m, 3H), 6.96 (d, J = 8.4 Hz, 2H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 197.1, 163.2, 138.2, 132.4, 131.7, 130.0, 129.5, 128.2, 113.6, 55.8; IR (neat cm⁻¹): 1652 (C=O); LRMS (EI 70 ev) m/z (%): 212 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₄H₁₃O₂ (M+H)⁺ 213.0909, found 213.0913.

(4-Florophenyl)(phenyl)methanone (2d): 1

¹H NMR (400 MHz, CDCl₃) δ : 7.86-7.83 (m, 2H), 7.78 (d, J = 4.2 Hz, 2H), 7.62 (dd, J = 7.2 Hz, J = 1.2 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.18 (t, J = 8.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.5, 165.5, 162.9, 137.6, 132.7, 132.6, 132.4, 132.0, 129.8, 128.3, 115.5, 115.3; IR (neat cm⁻¹): 1661 (C=O); LRMS (EI 70 ev) m/z (%): 200 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₃H₁₀FO (M+H)⁺ 201.0710, found 201.0719.

(4-Chlorophenyl)(phenyl)methanone (2e): ¹

¹H NMR (400 MHz, CDCl₃) δ : 7.78 (t, J = 7.2 Hz, 4H), 7.62 (t, J = 7.4 Hz, 1H), 7.50 (dd, J = 7.6 Hz, J = 8.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.4, 138.8, 137.2, 135.8, 132.6, 131.4, 129.9, 128.6, 128.3; IR (neat cm⁻¹): 1664 (C=O); LRMS (EI 70 ev) m/z (%): 218 (41), 216 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₃H₁₀ClO (M+H)⁺ 217.0415, found 217.0410.

(4-Bromophenyl)(phenyl)methanone (2f): 1

¹H NMR (400 MHz, CDCl₃) δ : 7.78 (t, *J* = 4.2 Hz, 2H), 7.69 (dd, *J* = 2.0 Hz, *J* = 2.0 Hz, 2H), 7.64-7.58 (m, 3H), 7.51 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.6, 137.1, 136.3, 132.6, 131.6, 131.5, 129.9, 128.4, 127.5; IR (neat cm⁻¹): 1659 (C=O); LRMS (EI 70 ev) *m/z* (%): 260 (M⁺, 100), 258 (81); HRMS m/z (ESI) calcd for C₁₃H₁₀BrO (M+H)⁺ 260.9909, found 260.9913.

(3,4-Dimethylphenyl)(phenyl)methanone (2g): ²

¹H NMR (400 MHz, CDCl₃) δ : 7.79 (t, J = 4.2 Hz, 2H), 7.61 (s, 1H), 7.59-7.52 (m, 2H), 7.49 (t, J = 7.6 Hz, 2H), 7.23 (d, J = 7.6 Hz, 1H), 2.35 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 198.3, 141.9, 138.0, 136.7, 135.3, 132.0, 131.1, 129.9, 129.4, 128.1, 128.0, 20.0, 19.7; IR (neat cm⁻¹): 1661 (C=O); LRMS (EI 70 ev) m/z (%): 210 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₅H₁₅O (M⁺H)⁺ 211.1116, found 211.1111.

Phenyl(m-tolyl)methanone (2h): ³

¹H NMR (400 MHz, CDCl₃) δ : 7.81 (dd, J = 1.2 Hz, J = 8.4 Hz, 2H), 7.62-7.57 (m, 3H), 7.46-7.40 (m, 2H), 7.38 (dd, J = 4.4 Hz, J = 4.4 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.8, 138.1, 137.4, 137.1, 133.0, 132.1, 130.6, 130.1, 128.4, 128.0, 127.2, 21.3; IR (neat cm⁻¹): 1663 (C=O); LRMS (EI 70 ev) m/z (%): 196 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₄H₁₃O (M+H)⁺ 197.0960, found 197.0954.

(3-Chlorophenyl)(phenyl)methanone (2i): ¹

¹H NMR (400 MHz, CDCl₃) δ : 7.80-7.71 (m, 3H), 7.68-7.65 (m, 1H), 7.63-7.59 (m, 1H), 7.56-7.54 (m, 1H), 7.51 (dd, J = 4.8 Hz, J = 4.0 Hz, 2H), 7.43 (dd, J = 6.0 Hz, J = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.5, 139.4, 137.0, 135.2, 133.0, 132.6, 130.2, 130.0, 129.6, 128.4, 128.1; IR (neat cm⁻¹): 1657 (C=O); LRMS (EI 70 ev) m/z (%): 218 (36), 216 (M⁺, 90); HRMS m/z (ESI) calcd for C₁₃H₁₀ClO (M+H)⁺ 217.0415, found 217.0421.

Phenyl(o-tolyl)methanone (2j): ¹

¹H NMR (400 MHz, CDCl₃) δ : 7.74 (d, J = 7.2 Hz, 2H), 7.54-7.50 (m, 1H), 7.43-7.36 (m, 2H), 7.33-7.26 (m, 1H), 7.25-7.20 (m, 3H); 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 198.5, 138.8, 138.1, 137.0, 133.5, 131.7, 130.6, 130.3, 129.0, 128.8, 125.4, 20.4; IR (neat cm⁻¹): 1647 (C=O); LRMS (EI 70 ev) m/z (%): 196 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₄H₁₃O (M+H)⁺ 197.0960, found 197.0961.

Dithiophen-2-ylmethanone (2k): ⁴

¹H NMR (400 MHz, CDCl₃) δ : 8.08 (dd, J = 4.0 Hz, J = 1.2 Hz, 2H), 7.86 (dd, J = 4.8 Hz, J = 1.2 Hz, 2H), 7.22-7.17 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 182.8, 138.5, 137.3, 137.0, 128.6; 1631 (C=O); LRMS (EI 70 ev) m/z (%): 194 (M⁺, 100); HRMS m/z (ESI) calcd for C₉H₇OS₂ (M+H)⁺ 194.9932, found 194.9936.

Phenyl(thiophen-2-yl)methanone (2l): ⁵

¹H NMR (400 MHz, CDCl₃) δ : 7.87 (d, *J* = 7.6 Hz, 2H), 7.73 (d, *J* = 4.8 Hz, 1H), 7.65 (d, *J* = 3.6 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 2H), 7.17 (t, *J* = 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 188.2, 143.6, 138.1, 134.8, 134.1, 132.2, 129.1, 128.3, 127.9; IR (neat cm⁻¹): 1638 (C=O); LRMS (EI 70 ev) *m/z* (%): 188 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₁H₉OS (M+H)⁺ 189.0368, found 189.0361.

2-Naphthylphenone (2m): ⁶

¹H NMR (400 MHz, CDCl₃) δ : 8.26 (s, 1H), 7.95-7.91 (m, 4H), 7.87-7.84 (m, 2H), 7.65-7.60 (m, 2H), 7.57-7.50 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.5, 137.7, 135.2, 134.3, 132.3, 132.2, 131.7, 130.2, 129.2, 128.3, 128.1, 128.0, 127.5, 126.7, 125.4; IR (neat cm⁻¹): 1666 (C=O); LRMS (EI 70 ev) *m/z* (%): 232 (M⁺, 100); HRMS m/z (ESI) calcd for C₁₇H₁₃O (M+H)⁺ 233.7973, found 233.7970.

H NHPh E

N-phenylformamide (E):⁷

¹H NMR (400 MHz, CDCl₃) δ : 8.71 (d, J = 8.0 Hz, 1H), 8.40 (brs, 1H), 7.55-7.52 (m, 1H), 7.38-7.32 (m, 2H), 7.21 (t, J = 6.6 Hz, 1H), 7.12-7.08 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.5, 136.4, 129.7, 125.3, 118.6.

(D) References

- 1 M. Li, C. Wang and H. Ge, Org. Lett., 2011, 13, 2062.
- 2 K. P. Boroujeni, Chin. Chem. Lett. 2010, 21, 1395.
- 3 M. Cai, G. Zheng, L. Zhang and J. Peng, Eur. J. Org. Chem., 2009, 2009, 1585.
- 4 A. Maji, S. Rana, Akanksha and D. Maiti, Angew. Chem. Int. Ed., 2014, 53, 2428.
- 5 B. Xin, Y. Zhang and K. Cheng, J. Org. Chem., 2006, 71, 5725.
- 6 K. Ekoue-Kovi, H. Xu and C. Wolf, Tetrahedron Lett., 2008, 49, 5773.
- 7 F. Ma, X. Xie, L. Zhang, Z. Peng, L. Ding, L. Fu and L. Zhang, J. Org. Chem., 2012, 77, 5279.

¹H NMR of Compound 2a

¹³C NMR of Compound 2a

¹H NMR of Compound 2b

¹³C NMR of Compound 2b

¹H NMR of Compound 2c

¹³C NMR of Compound 2c

¹H NMR of Compound 2d

¹H NMR of Compound 2e

¹³C NMR of Compound 2e

¹H NMR of Compound 2f

¹³C NMR of Compound 2f

¹H NMR of Compound 2g

¹³C NMR of Compound 2g

¹H NMR of Compound 2h

¹³C NMR of Compound 2h

 $\begin{array}{c}
 7.808 \\
 7.797 \\
 7.791 \\
 7.791 \\
 7.791 \\
 7.789 \\
 7.771 \\
 7.689 \\
 7.673 \\
 7.673 \\
 7.673 \\
 7.673 \\
 7.666 \\
 7.652 \\
 7.622 \\
 7.610 \\
 7.622 \\
 7.522 \\
 7.554 \\
 7.554 \\
 7.554 \\
 7.554 \\
 7.554 \\
 7.554 \\
 7.553 \\
 7.554 \\
 7.553 \\
 7.554 \\
 7.553 \\
 7.554 \\
 7.553 \\
 7.554 \\
 7.553 \\
 7.542 \\
 7.515 \\
 7.503 \\
 7.494 \\
 7.484 \\
 7.438 \\
 7.423 \\
 7.417 \\
 7.401 \\
 7.260 \\
\end{array}$

¹H NMR of Compound 2i

¹³C NMR of Compound 2i

¹H NMR of Compound 2j

¹³C NMR of Compound 2j

¹H NMR of Compound 2k

¹³C NMR of Compound 2k

¹H NMR of Compound 2l

¹³C NMR of Compound 2l

¹H NMR of Compound 2m

¹H NMR of Compound E

¹³C NMR of Compound E