Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

I. Bors, J. Kaizer, G. Speier, M. Giorgi: Carbon dioxide as a primary oxidant and a C1 building block

Supplementary information for the paper

Carbon dioxide as a primary oxidant and a C1 building block

István Bors^a, József Kaizer^a, Gábor Speier*^a, Michel Giorgi^b

^aDepartment of Chemistry, University of Pannonia, 8201 Veszprém, Hungary ^bAix-Marseille Université, FR1739, Spectropole, Campus St. Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille cedex 20, France,e-mail: <u>speier@almos.uni-pannon.hu</u>

Table of content:

Page

General (Instruments, Materials and Methods)	2
General procedure for the synthesis of monoimines	3
General procedure for the synthesis of 1,3,2-oxazaphospholes	4
Preparation of 3 <i>H</i> -phenanthro[9,10-d]oxazol-2-ones	5
SFigure 1. The CVs of 2,7-disubstituted (<i>t</i> Bu, Br, NO ₂ , and H)	
2,3-dihydro-2,2,2-triphenylphenanthro[9,10-d]-1,3, $2\lambda^5$ -oxazaphospholes	7
SFigure 2. Redox potentials of $2a-d$ vs. 2σ values	8
SFigure 3 . The GC of the reaction between $2a$ and CO_2	9
SFigure 4. The GC-MS of phenantro[9,10-d][1,3]oxazol-2(3 <i>H</i>)-one (4b)	
using $C^{16}O_2$ in the reaction of 2,3-dihydro-2,2,2-triphenylphenanthro	
$[9,10-d]-1,3,2\lambda^5$ -oxazaphosphole	10
SFigure 5. The GC-MS of 4b using $C^{16}O_2$: $C^{18}O_2$ (~50:50)	11
SFigure 6. The GC-MS of PPh ₃ = 16 O and Ph ₃ P= 18 O mixture	12
SFigure 7. The FTIR spectra of the products of reaction of 2b	
with C ¹⁶ O ₂ :C ¹⁸ O ₂ (~50:50)	13
Kinetics	14
SFigure 8. Plots of [2b] vs. initial concentration of 2b	15
SFigure 9. Plots of the reaction rate (v) vs. the CO ₂ concentration.	16
SFigure 10. Plots of k_{obs} vs. the CO ₂ concentration	17
SFigure 11. The Arrhenius plot	18
SFigure 12. The Eyring plot	19
SFigure 13. The effect of added NEt ₃ on the reaction rate	20
SFigure 14. ln [1,3,2-oxazaphosphole, 2b] versus time with added NEt ₃	21
STable 1. Summary of the kinetic data	22
STable 2. Summary of the activation parameters	23
SFigure 15. The ¹ H NMR spectrum of 4a	24
SFigure 16. The ¹³ C NMR spectrum of 4a	25
SFigure 17. The ¹ H NMR spectrum of 4b	26
SFigure 18. The ¹³ C NMR spectrum of 4b	27
SFigure 19. The HPLC chromatogram of 4a	28
SFigure 20. The HPLC chromatogram of 4b	29

Experimental details

General

Instruments: All infrared spectra were obtained in KBr pellets using a ThermoNicolet Avatar 330 FT-IR. UV-Vis spectra were recorded at an Agilent 8453 spectrometer. NMR spectra were recorded on a Bruker Avance 400 (400 MHz) instrument. Chemical shifts (δ) were reported in parts per million (ppm), downfield from internal TMS or H₃PO₄. In the case of 2,3-dihydro-2,2,2-triphenylphenanthro[9,10-d]-1,3,2 λ^5 -oxazaphosphole derivates, UV and NMR spectra were recorded under argon atmosphere. Melting points were obtained by using a calibrated melting point microscope. Elemental analyses were performed on a Carlo Erba 1012 apparatus. Field desorption mass (FD-MS) spectra were measured on an Agilent 6890 N Network GC system with an Agilent 5973 Network MS mass spectrometer equitted with an DB-5MS UI column. Gaschromatographic (GC) analyses and the kinetic measurements were carried out on a HP 4890D instrument with flame ionization detector equipped with an Equity-1 capillary column. HPLC was measured on a Jasco LC-2000PLUS SERIES HPLC SYSTEM with a Gemini NX C18 250x4.6 mm column, 25 °C, eluent water:acetonitrile 20:80, eluent speed 0.5 mL/min, injected volume 20 µL. Cyclic voltammograms were taken on a VoltaLab PST006 potentiostat with Voltamaster 4 software for data processing using a three-electrode configuration composed of Pt-wire counter electrode, glassy carbon working electrode and an Ag/AgCl (3M) reference electrode. The potentials were referenced versus the ferrocene/ferrocenium (Fc/Fc⁺) redox couple. The CVs were measured in argon-saturated acetonitrile using 0.1 M tetrabutylammonium perchlorate (TBAP) as supporting electrolyte.

Materials and Methods: Solvents, reagents and starting materials were purchased from commercial sources and were used as received with the exception of acetonitrile, which was distilled under an atmosphere of argon from calcium hydride prior to use.¹ All manipulations were performed under argon by standard Schlenk-techniques. 9,10-Phenanthrenequinone² and 2,7-*tert*-butyl-9,10-phenanthrenequinone³ was prepared from phenanthrene and 2,7-di-*tert*-butylphenanthrene by CrO₃ oxidation. 2,7-Dinitro-9,10-phenanthrenequinone⁴ was prepared by nitration of 9,10-phenanthrenequinone, and 2,7-dibromo-9,10-phenanthrenequinone⁵ was prepared by reaction between NBS (*N*-bromosuccinimide) and 9,10-phenanthrenequinone.

General procedure for synthesis 9,10-phenanthrenequinone monoimines (1a-d)⁶

2,7-Derivates of phenanthrenequinone (10 mmol) were dissolved in a mixture of $CHCl_3$ (30 mL) and ethanol (60 mL). $NH_3(g)$ was bubbled through the solution at reflux temperature for 2 h. After cooling yellow needles were separated and dried in *vacuum*.

2,7-Di*tert*-**butyl-9,10-phenanthrenequinone monoimine (1a):** The title compound was prepared according to the general procedure. Yield: 2.31 g (72%). m.p. 174-175 °C; FTIR (KBr) v =3199(m) (N-H), 3077(w) (C-H), 2958(s) (C-H), 1669 cm⁻¹ (s) (C=O); UV-Vis(CH₃CN), $\lambda_{max}(lg\varepsilon) = 213(4.67)$, 265(4.86), 274(4.83), 315(3.74), 420 nm(3.53); MS (70 eV): *m/z* (%): 319.2(100) [M⁺]. Elemental analysis for C₂₂H₂₅NO calc.: C 82.72, H 7.89, N 4.38, O 5.01%, found: C 82.70, H 7.82, N 4.35, O 4.97%.

9,10-Phenanthrenequinone monoimine (1b): The title compound was prepared according to the general procedure. Yield: 1.55 g (75%). m.p. 165-167°C; FTIR (KBr): v = 3199(m) (N-H), 1674(s) (C=O), 1589, 1451, 1282, 1251, 1227, 1122, 1011, 942, 923, 897, 758, 714, 696, 534, 433 cm⁻¹; UV-Vis(CH₃CN): $\lambda_{max}(lg\epsilon) = 213(4.44)$, 257(4.49), 265(4.49), 314(3.54), 393nm (3.21); MS (70 eV): *m/z* (%): 207.2(89) [M⁺]; Elemental analysis for C₁₄H₉NO calc.: C 81.14, H 4.38, N 6.76, O 7.72%, found: C 81.04, H 4.37, N 6.76, O 7.67%.

2,7-Dibromo-9,10-phenanthrenequinone monoimine (1c): The title compound was prepared according to the general procedure. Yield: 2.88 g (79%). m.p. 235-237 °C; FTIR (KBr): v = 3199(m) (N-H), 1677(s) (C=O), 1077(m) (C_{arom}-Br), 1033 cm⁻¹(w) (C_{arom}-Br); UV-Vis(CH₃CN), $\lambda_{max}(lg\varepsilon) = 191(4.42)$, 213(4.41), 276(4.65), 411nm (3.39); MS (70 eV): m/z(%): 365.5(100) [M⁺]; Elemental analysis for C₁₄H₇Br₂NO calc.: C 46.07, H 1.93, N 3.84, O 4.38%, found: C 46.02, H 1.91, N 3.79, O 4.37%.

2,7-Dinitro-9,10-phenanthrenequinone monoimine (1d): The title compound was prepared according to the general procedure. Yield: 1.95 g (66%). m.p. 291-293°C; FTIR (KBr): v = 3211 (m, N-H stretch), 3166, 1674(s, C=O stretch), 1516, 1348 cm⁻¹; UV-Vis(CH₃CN), $\lambda_{max}(lg\varepsilon) = 204(4.36), 224(4.36), 296(4.41), 369(3.80)$ nm. Elemental analysis for C₁₄H₇N₃O₅ calc.: C 56.57, H 2.37, N 14.14, O 26.92%, found: C 56.51, H 2.35, N 14.08, O 26.84%. MS *m/z:* 296.9 (M⁺).

General procedure for synthesis 1,3,2-oxazaphospholes (2a-d)

In an argon flushed Schlenk vessel **1a-d** (2 mmol) and triphenylphosphine (0.53 g, 2 mmol) were dissolved in argon saturated acetonitrile (10 mL) and refluxed for 2 h. After cooling the precipitate were filtered off under argon and dried in *vacuum*.

2,3-Dihydro-2,2,2-triphenyl-2,7-di-*tert*-butylphenanthro[9,10-d]-1,3,2λ⁵-oxazaphosphole

(2a): The reaction was carried out according to the general procedure. The product was obtained as a brown solid in 55% (0.64 g) yield. m. p. 258-261°C; FTIR (KBr): v = 3452(m, N-H stretch), 3051, 2954(s, C-H stretch), 2905(m, C-H stretch), 2858(m, C-H stretch), 1612, 1586, 1435, 1365, 1306, 1187, 1110 cm⁻¹; ¹H-NMR (CD₃CN, 25°C): $\delta = 8.59-8.51$ (m, ar., 2H); 8.03 (brs, NH, 1H); 7.77-7.34 (m, ar., 17H); 7.23 (s, ar., 2H); 1.45 (s, *t*Bu, 9H); 1.26 (s, *t*Bu, 9H);³¹P-NMR (162 MHz, CD₃CN, 25°C): $\delta = 29.08$, 21.92; UV-Vis(CH₃CN): $\lambda_{max}(lg\varepsilon) = 262(4.64)$, 274(4.61), 335(3.95), 413(3.48), 526 nm (3.13); MS (70 eV): *m/z*(%): 582.1 (100) [M⁺]; Elemental analysis for C₄₀H₄₀NOP calc.: C 82.59, H 6.93, N 2.41, O 2.75%, found:C 82.52,H 6.89, N 2.37, O 2.71%.

2,3-Dihydro-2,2,2-triphenylphenanthro[9,10-d]-1,3,2λ⁵-oxazaphosphole (2b).⁷

2,3-Dihydro-2,2,2-triphenyl-2,7-dibromophenanthro[9,10-d]-1,3,2λ⁵-oxazaphosphole

(2c): The reaction was carried out according to the general procedure. The product was obtained as a red solid in 57% (0.72g) yield. m. p. 214-216°C; FTIR (KBr) v = 3407(m, N-H stretch), 3052, 1618, 1588, 1414, 1366, 1311, 1086, 1073(m, C_{arom}-Br stretch), 1057, 1025, 993cm⁻¹; ¹H-NMR (CD₃CN, 25°): $\delta = 7.68-7.21$ (m, ar., 22H); ³¹P-NMR (162 MHz, CD₃CN, 25°C): $\delta = 29.24$; UV-Vis(CH₃CN), λ_{max} (lg ε) = 268(4.54), 282(4.46), 346(3.88), 414(3.30), 500(2.89), 536nm (2.87). MS (70 eV): m/z(%): 627.3 (100) [M⁺]; Elemental analysis for C₃₂H₂₂Br₂NOP calc.: C 61.27, H 3.53, N 2.32, O 2.55%, found:C 61.20, H 3.49, N 2.31, O 2.52%.

2,3-Dihydro-2,2,2-triphenyl-2,7-dinitrophenanthro[9,10-d]-1,3,2 λ^5 -oxazaphosphole (2d): The reaction was carried out according to the general procedure. The product was obtained as a purple solid in 55% (0.61 g) yield. m. p. 134-135°C; FTIR (KBr): $\nu = 3419$ (m) (N-H), 3314(m), 1602(m), 1508(s), 1434(s), 1341 cm⁻¹ (s); ¹H-NMR (CD₃CN, 25°C): $\delta = 7.67-7.23$ (m, ar., 22H). ³¹P-NMR (162 MHz, CD₃CN, 25°C) $\delta = 29.64$; UV-Vis(CH₃CN): $\lambda_{max}(lg\varepsilon) = 322(4.53)$, 540 nm (3.30); MS (70 eV): m/z(%): 559.8 (100) [M⁺]; Elemental analysis for C₃₂H₂₂N₃O₅P calc.: C 68.69, H 3.96, N 7.51, O 14.30%, found: C 68.64, H 3.90, N 7.45, O 14.22%.

Preparation of 3*H*-phenanthro[9,10-d]oxazol-2-ones (general procedure) at reflux temperature ",*a*)", at room temperature ",*b*)" and in one-pot route ",*c*)".

3H-Phenanthro[9,10-d]oxazol-2-one (4b): a) In argon-saturated acetonitrile (80 mL) 2b (4.70 g, 10 mmol) was dissolved. The argon atmosphere was replaced by carbon dioxide and the mixture was refluxed for 3 h. It was cooled down to room temperature, filtered and the solid material was refluxed in 500 mL ethanol and hot filtered. From the filtrate on standing pinkish needles separated, which were filtered off and dried in vacuum to give 1.83 g (78%) 4b. b) In argon-saturated acetonitrile (80 mL) 2b (4.70 g, 10 mmol) was dissolved. The argon atmosphere was replaced by carbon dioxide and the mixture was stirred at room temperature for 24 h. The previously described workup gives 1.69 g (72%) 4b. c) In 80 ml argon-saturated acetonitrile 1b (2.07 g, 10 mmol) and triphenylphosphine (2.62 g, 10 mmol) was dissolved. The argon atmosphere was replaced by carbon dioxide and the mixture was refluxed for 3 h. The previously described workup gives 1.86 g (79%) 4b. m. p. 319-21°C; FTIR (KBr): v =3446(m) (N-H), 3148(m), 3075(m), 1750(vs) (C=O), 1618(m), 1538(w), 1451(m), 1375(s), 1052(m), 1031(m), 933(s), 745(s) cm⁻¹; ¹H-NMR (400 MHz, DMSO- d_6 , 25° C): $\delta = 8.89$ (t, ar., 2H); 8.10 (dd, ar., 1H); 8.00 (dd, ar., 1H); 7.78-7.62 (m, ar., 4H). ¹³C-NMR (400 MHz, DMSO-d₆, 25° C): $\delta = 155.80$ (C=O), 135.17, 128.40, 128.13, 127.86, 127.06, 126.66, 125.94, 124.69, 124.55, 122.90, 122.18, 120.51, 120.22, 119.7. MS (70 eV): m/z(%): 235.1(100) [M⁺]; Elemental analysis for C₁₅H₉NO₂ calc.: C 76.66, H 3.86, N 5.95, O 13.60%, found: C 76.50, H 3.75, N 5.85%.

Identification of OPPh₃: The filtrate from the crude product *a*) was concentrated under reduced pressure and flash chromatographed on silica gel (eluent: EtOAc-petrolether1:1). The colored fragments were eliminated and the remaining triphenylphosphine oxide was washed out with methanol. The solvent evaporated and the remaining solid identified as triphenylphosphine oxide (1.05 g, 38%) compared with an authentic sample (TLC, mixed melting point, FTIR).

2,7-Di-*tert*-**butylphenantro**[9,10-d][1,3]oxazol-2(3*H*)-on (4a): According to the method *c*) **2a** (0.64 g, 2 mmol) and triphenylphosphine (0.53 g, 2 mmol) were dissolved in acetonitrile (20 mL) under argon. The argon atmosphere was replaced by carbon dioxide and the mixture refluxed for 3 h. Workup as previously described and recrystallized from ethanol gave colorless needles of 4a (0.28 g 80%). m. p. 379-381°C; FTIR (KBr): v = 3448(m) (N-H), 3154(m), 3028(w), 3148(m), 2959(s), 2901(m), 2864(w), 1758(vs) (C=O), 1625(m), 1524(w), 1479(m), 1427(m), 1375(s), 1263(m), 1054(m), 932(s), 878(m), 812(s) cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆, 25°C): $\delta = 8.74$ (dd, ar., 2H); 8.14 (d, ar., 1H); 7.89 (d, ar.1H); 7.72 (ddd, ar, 2H); 1.42 (s, t-Bu, 18H). ¹³C-NMR (400 MHz, DMSO-d6, 25°C): $\delta = 155.79$ (C=O), 150.57, 150.48, 135.38, 125.60, 124.90, 124.76, 124.27, 124.13, 123.10, 120.08, 119.81, 118.10, 114.99, 31.64 (*t*-Bu), 31.54 (*t*-Bu); MS (70 eV): *m/z*(%): 347.2(100) [M⁺]; Elemental analysis for C₂₃H₂₅NO₂ calc.: C 79.50, H 7.25, N 4.03, O 9.21%, found: C 79.45, H 7.12, N 3.94, O 9.20%.

References:

- 1. W. Armarego, C. Chai, 6th ed., *Purification of Laboratory Chemicals*, Elsevier, Oxford, **2009**.
- 2. R. Anschütz, G. Schultz, Liebigs Ann. Chem. 1879, 196, 32-57.
- 3. A. Berg, J. H. Jakobsen, S.R. Johansen, Acta Chem. Scand. 1969, 23, 567-575.
- 4. T. K. Mukherjee, J. Phys. Chem. 1967, 71, 2277-2282.
- 5. M. Hanif, L. Ping, L. Mao, Z. Yan, Y. Zengh, X. Zengqi, M. Yuguang, L. Di, L. Jinghong, *Polym. Internat.* **2007**, *56*, 1507-1513.
- 6. É.Balogh-Hergovich, G. Speier, Z. Tyeklár, Synthesis, 1982, 9, 731-732.
- 7. G. Speier, Z. Tyeklár, V. Fülöp, L. Párkányi, Chem. Ber. 1988, 121, 1685-1688.

SFigure 1. The CVs of 2,3-dihydro-2,2,2-triphenylphenanthro[9,10-d]-1,3, $2\lambda^5$ -oxazaphosphole derivatives (**2a-d**). The 2,7-dibromo- and 2,7-dinitro derivatives did not react under the investigated conditions. $E^{\circ}_{1/2}$ are given against Fc/Fc⁺.

Derivative	E ⁰ _{1/2} (V)
- <i>t</i> Bu	0.032
-H	0.083
-Br	0.213
-NO ₂	0.351

SFigure 2. The redox potentials (E^0 ½) of 2a-d vs their 2σ values.

2σ

SFigure 3. The gas chromatogram of the reaction mixture between 2,3-dihydro-2,2,2triphenylphenanthro[9,10-d]-1,3,2 λ^5 -oxazaphosphole (**2b**) and CO₂ at the end of the synthetic procedure *a*). Injected volume: 1 µL, 10°C/min from 100°C.

SFigure 4. The MS of spectrum of phenanthro[9,10-d][1,3]oxazol-2(3*H*)-one (**4b**) from the reaction of 2,3-dihydro-2,2,2-triphenylphenanthro[9,10-d]-1,3,2 λ^5 -oxazaphosphole with C¹⁶O₂ in acetonitrile.

SFigure 5. The MS spectrum of phenanthro[9,10-d][1,3]oxazol-2(3*H*)-one (**4b**) prepared from 2,3-dihydro-2,2,2-triphenylphenanthro[9,10-d]-1,3,2 λ^5 -oxazaphosphole and an isotope mixture of C¹⁶O₂:C¹⁸O₂ (~50:50).

SFigure 6. The MS spectrum of a mixture of ¹⁶OPPh₃ and ¹⁸OPPh₃ mixture of the reaction product from the reaction of 2,3-dihydro-2,2,2-triphenylphenanthro[9,10-d]-1,3,2 λ^{5} -oxazaphosphole with C¹⁶O₂:C¹⁸O₂ (~50:50) in MeCN.

SFigure 7. The IR spectra of the products of the reaction of **2b** with CO₂. Blue line is related to the C¹⁶O₂:C¹⁸O₂ (~50:50) experiment, black to the C¹⁶O₂ experiment. $v_{C=}{}^{16}O_{O}$: 1752 cm⁻¹; $v_{C=}{}^{18}O_{O}$: 1726 cm⁻¹; $v_{P=}{}^{16}O_{O}$: 1184 cm⁻¹; $v_{P=}{}^{18}O_{O}$: 1152 cm⁻¹.

eonettimenenT %

Kinetics

A Schlenk tube, containing the described concentrations of 2b in acetonitrile, fitted with septum and excess of CO₂ was placed in a thermostated bath. The reaction (1) was monitored with GC in the presence of naphthalene as an internal standard. The GC analysis was performed almost immediately after sample acquisition. The concentration of [2b] was determined vs the time. The velocity of reaction (1) is given by equation (2). By using CO₂ in excess,(1) becomes a pseudo-first order reaction represented by equation (3) and (4).

- (1) $\mathbf{2b} + CO_2 \rightarrow \mathbf{4b} + OPPh_3$
- (2) $v = k_2[CO_2][2b]$
- $(3) \qquad k_{\rm obs} = k_2 [\rm CO_2]$
- (4) $v = k_{obs}[\mathbf{2b}]$

SFigure 8. Plots of reaction rate versus time at three different starting **2b** concentrations, 25°C temperature, 1 bar CO₂ pressure, 10 mL acetonitrile. The slope is $10^{-7} k_{obs}$.

[**2b**]₀ / M

SFigure 9. Plots of ln [**2b**] versus time at various CO_2 partial pressures. Open circles $pCO_2=$ 0.25 bar, open diamonds $pCO_2 = 0.50$ bar, filled triangles $pCO_2 = 0.75$ bar, open squares $pCO_2 = 1$ bar. All reactions were carried out at 25°C in the presence of excess of Ar-CO₂ gas mixtures in 10 mL acetonitrile.

SFigure 10. Plots of the versus the CO₂ concentration. 25°C, 1 bar CO₂ pressure, 10 mL acetonitrile. The slope is $10^{-5}k_2$, [**2b**] = $2x10^{-2}$ M.

SFigure 11. The Arrhenius plot. Measurements were carried out at four different temperatures: 25, 35, 45, 55°C. [2b] = 20 mM, 1 bar CO₂ pressure, 10 mL acetonitrile.

SFigure 12. The Eyring plot. Measurements were carried out at four different temperatures: 25, 35, 45, 55°C. [2b] = 20 mM, 1 bar CO₂ pressure, 10 mL acetonitrile.

SFigure 13. Effect of added Et_3N (1 equivalent) on the reaction rate. **2b** = 20 mM in 10 mL CH₃CN solution under 1 bar CO₂ at 25°C.

time / sec

SFigure 14. ln [**2b**] versus time. Effect of added Et₃N on the reaction rate in 10 mL CH₃CN solution with concentration of 20 mM **2b** under 1 bar CO₂ at 25°C. $k_2 = 6.87 \times 10^{-5} \text{ M}^{-1} \text{s}^{-1}$, $k_2^{\text{Et3N}} = 2.87 \times 10^{-4} \text{ M}^{-1} \text{s}^{-1}$.

time / sec

No.	T (K)	10 ² [CO ₂]* (M)	10 ² [2b] (M)	$10^5 k_2 / M^{-1} s^{-1}$	$10^5 k_{\rm obs} / {\rm s}^{-1}$	$10^7 v / Ms^{-1}$
1	298	32	1	7.08±0.28	2.26±0.09	2.26±0.09
2	298	32	2	6.87±0.25	2.20 ± 0.08	4.40±0.16
3	298	32	4	6.89±0.26	2.21±0.08	8.82±0.33
4	298	24	2	6.89±0.65	1.65±0.16	3.31±0.31
5	298	16	2	6.18±0.30	0.99 ± 0.05	1.98 ± 0.10
6	298	8	2	6.98±0.36	0.56±0.03	1.12 ± 0.06
**				6.81±0.12		
7	308	25	2	90.56±2.05	22.64±0.51	45.28±1.03
8	318	20	2	124.9±7.71	24.97±1.54	49.94 ± 3.08
9	328	16	2	254.6±27.50	40.48 ± 4.40	80.96±8.80
Et ₃ N	298	32	2	28.69±2.42	91.80±0.78	18.36±1.55

STable 1. Summary of the kinetic data.

**Mean value of the kinetic constant k_2 and its standard deviations $\sigma(k_2)$ were calculated as $k_2 = (\sum_i w_i k_i / \sum_i w_i)$ and $\sigma(k_2) = (\sum_i w_i (k_i - k_2)^2 / (n-1) \sum_i w_i)^{1/2}$, where $w_i = 1/\sigma_i^2$.

*CO₂ solubility data from the paper: A. Gennaro, A. A. Isse, E. Vianello, *J. Electroanal. Chem.* **1990**, *289*, 203-215

STable 3. Summary of the activation parameters.

Ea	ΔH^{\ddagger}	ΔS^{\ddagger}
kJ/mol	kJ/mol	J/molK
91.8±26.5	89.2±26.6	-21±10

SFigure 15. The ¹H NMR spectrum of **4a**.

SFigure 16. The ¹³C NMR spectrum of 4a.

SFigure 17. The ¹H NMR spectrum of 4b.

SFigure 18. The ¹³C NMR spectrum of 4b.

No PDA 2D View in this channel.

SFigure 20. The HPLC chromatogram of 4b.

