Supporting Information

Highly active recyclable heterogeneous $\mathrm{Pd} / \mathrm{ZnO}$
nanoparticles catalyst: Sustainable developments for the C-O and C-N bond cross-coupling reactions of aryl halides under ligand-free condition

Mona Hosseini-Sarvari, ${ }^{\text {a,* }}$ Zahra Razmi
${ }^{a}$ Department of Chemistry, College of Science, Shiraz University, Shiraz 71454, I. R. Iran

Contents

1. General Experimental. 3
2. Synthesis of nano Pd/ZnO. 3
3. Synthesis of nano ZnO 4
4. General procedure for O-arylation reaction. 4
5. General procedure for N-arylation reaction. 5
6. Characterization of the products. 5

1. General Experimental:

The amount of palladium nanoparticles supported on ZnO was measured by ICP analyzer (Varian, Vista-pro) and atomic absorption spectroscopy. The distribution morphology of the product was analyzed by Leica Cambridge, models 360, version V03.03 scanning electron microscope (SEM) and the size of the nano particles was confirmed by a Philips CM10 TEM instrument. X-ray photoelectron spectroscopy (XPS) measurements were conducted with a XR3E2 (VG Microtech) twin anode X-ray source using AlK $\alpha=1486.6 \mathrm{eV})$. The specific surface areas $\left(\mathrm{SSA}_{\mathrm{BET}} ;\left(\mathrm{m}^{2} / \mathrm{g}\right)\right.$) of the nanopowders were determined with the nitrogen adsorption measurement applying the BET method at 77 K (BELsorp-mini II). A lab-made thermogravimetric analyzer (TGA) was also adopted for studying both the interaction behavior of CO (Linde, 99.99\%) as a selective probe molecule with palladium nanoparticles and thermal stability of Pd -supported ZnO nanoparticles after interacted with CO molecules. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra were obtained on a Bruker DPX 250 MHz instrument. Elemental analyses were performed using C, H, and N elemental analyzer.

2. Synthesis of nano $\mathrm{Pd} / \mathrm{ZnO}$

$\mathrm{Pd} / \mathrm{ZnO}$ nanoparticles catalyst was prepared by co-precipitation (CP) method. $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.267 \mathrm{~g}, 0.897 \mathrm{mmol})$, was dissolved in 25 mL distilled water to
obtain a certain concentration solutions. Also $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} .2 \mathrm{H}_{2} \mathrm{O}(0.0266 \mathrm{~g}, 0.099$ mmol) was dissolved in 25 mL distilled water and sonicated to obtain a uniform solutions. Then the corresponding mixed nitrate solutions of palladium and zinc were precipitated with 1 M sodium carbonate solution at room temperature to produce a final pH of 8 . After aging for 2 h at $70-80^{\circ} \mathrm{C}$, the precipitates were filtered, washed several times with distilled water, dried at $80^{\circ} \mathrm{C}$ overnight and then calcined at 723 K for 2 h . Palladium coating was $9.84 \mathrm{wt} \%$ as measured by ICP.

3. Synthesis of nanoZnO

ZnO nanoparticles catalyst was prepared by co-precipitation (CP) method. $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.267 \mathrm{~g}, 0.897 \mathrm{mmol})$, was dissolved in 25 mL distilled water to obtain a certain concentration solutions. Then the corresponding nitrate solution of zinc was precipitated with 1 M sodium carbonate solution at room temperature to produce a final pH of 8 . After aging for 2 h at $70-80^{\circ} \mathrm{C}$, the precipitate was filtered, washed several times with distilled water, dried at $80^{\circ} \mathrm{C}$ overnight and then calcined at 723 K for 2 h .

4. General procedure for \boldsymbol{O}-arylation reaction

In the typical procedure O-arylation coupling reaction, a mixture of arylhalide
(1 mmol), phenol (1 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol})$, and $\mathrm{Pd} / \mathrm{ZnO}$ nanoparticles $(0.005 \mathrm{~g}$, which contains $462 \times 10^{-8} \mathrm{~mol} \%$ of Pd which was determined by ICP) at $120^{\circ} \mathrm{C}$ was placed in a round bottom flask. The progress of reaction was monitored by TLC. After completion of the reaction, the reaction mixture was diluted with ethyl acetate (5 mL) and then centrifuged to separate the catalyst. The solvent was removed under reduced pressure to get the crude product. The crude product was purified by column chromatography to afford the pure product.

5. General procedure for \boldsymbol{N}-arylation reaction

A mixture of arylhalide (1 mmol), N -H heterocycle (1.0 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol})$, DMF (1 mL), and $\mathrm{Pd} / \mathrm{ZnO}$ nanoparticles (0.003 g , which contains $277 \times 10^{-8} \mathrm{~mol} \%$ of Pd which was determined by ICP) at $120^{\circ} \mathrm{C}$ was placed in a round bottom flask. Progress of the reaction was monitored by TLC. After the reaction was finished, it was cooled to the room temperature, and DMF was removed under reduced pressure. The residue was diluted with ethyl acetate (5 mL), and centrifuged to separate the catalyst. The centrifugate was washed with water $(2 \times 5 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Further purification was achieved by column chromatography.

6. Characterization of the products

Oxydibenzene (Table 5, entry 1). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ${ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.94-7.11(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=118.9,123.2,129.7,157.2$; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}: \mathrm{C}, 84.68 ; \mathrm{H}$, 5.92. Found: C, 84.69; H, 5.92.

1-phenoxynaphthalene (Table 5, entry 2). ${ }^{1} \mathrm{HNMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.87-$ $7.9(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $113.3,118.4,118.10,122.5,123.1,123.2,125.5,125.7,126.6,127.8,128.1,129.9$, 135.1, 153.1, 157.7; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 87.25$; H, 5.49. Found: C, 87.25; H, 5.49.

2-phenoxynaphthalene (Table 5, entry 3). ${ }^{1} \mathrm{HNMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.94-$ $7.08(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.60-7.80(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=114.1,119.1,120.0,123.5,124.7,126.5,127.1,127.8,129.9,129.9$, 130.2, 134.4, 155.1, 157.2; Anal. Calcd. For $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 87.25 ; \mathrm{H}, 5.49$. Found: C, 87.25; H, 5.48.

1-Bromo-4-phenoxybenzene (Table 5, entry 4). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $6.82-7.02(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.43(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=115.6,119.0,120.4,123.7,129.9,132.6,156.5,156.7$; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrO}: \mathrm{C}, 57.86 ; \mathrm{H}, 3.64 ; \mathrm{Br}, 32.08$. Found: C, $57.87 ; \mathrm{H}, 3.64 ; \mathrm{Br}, 32.06$. 1-Chloro-4-phenoxybenzene (Table 5 , entry 5). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$
6.86-6.96(m, 4H), 7.07-7.11 (m, 1H), 7.21-7.30 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=118.9,119.9,123.5,128.1,129.6,129.8,155.9,156.8$; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClO}: \mathrm{C}, 70.43 ; \mathrm{H}, 4.43 ; \mathrm{Cl}, 17.32$. Found: C, $70.42 ; \mathrm{H}, 4.43 ; \mathrm{Cl}, 17.31$.

1-Methoxy-4-phenoxybenzene (Table 5, entry 6). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=3.78(\mathrm{~s}, 3 \mathrm{H}), 6.87-7.02(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=55.6,114.8,117.5,120.8,122.4,129.5,150.0,155.8,158.5$; Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 77.98; H, 6.04. Found: C, 77.98; H, 6.03.

1-Ethyl-2-phenoxybenzene (Table 5, entry 7). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $1.19(\mathrm{t}, J=7.75 \mathrm{~Hz}, 3 \mathrm{H}), 2.64(\mathrm{q}, J=7.25 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-6.92(\mathrm{~m}, 3 \mathrm{H}), 7.03-7.13$ (m, 3H), 7.23-7.29 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.4,23.2$, 117.4, 119.7, 122.3, 124.0, 127.0, 129.6, 129.7, 135.8, 154.1, 158.1; Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 84.81 ; \mathrm{H}, 7.12$. Found: C, 84.81; H, 7.10.

1-Ethyl-3-phenoxybenzene (Table 5 , entry 8). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $1.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.51(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.92(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.24(\mathrm{~m}$, 4H); ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, CDCl_{3}): $\delta=15.4,28.7,116.1,118.5,118.8,122.8$, 123.0, 129.5, 129.7, 146.3, 157.2, 157.4; Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 84.81$; H, 7.12. Found: C, 84.82; H, 7.12.

1-Nitro-4-phenoxybenzene (Table 5, entry 9). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $7.00(\mathrm{~d}, J=9.25 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-$ $7.46(\mathrm{~m}, 2 \mathrm{H}), 8.19(\mathrm{~d}, J=9.25 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=117.0$,
$120.5,125.4,125.9,130.3,142.5,154.6,163.3$; Anal. Calcd. For $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{3}: \mathrm{C}$, 66.97; H, 4.22; N, 6.51. Found: C, 66.97; H, 4.22; N, 6.50.

1-Benzyl-2-phenoxybenzene (Table 5, entry 10). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $3.96(\mathrm{~s}, 2 \mathrm{H}), 6.85-7.03(\mathrm{~m}, 5 \mathrm{H}), 7.11-7.23(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=35.9,117.8,119.4,122.6,123.8,125.9,127.5,128.2,128.9,129.5,130.9$, 132.7, 140.4, 154.4, 157.6; Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 87.66$; H, 6.19. Found: C, 87.66; H, 6.20.

1-Benzyl-4-phenoxybenzene (Table 5, entry 11). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $3.95(\mathrm{~s}, 2 \mathrm{H}), 6.96-7.23(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=41.1,118.6$, 119.0, 122.9, 126.1, 128.4, 128.8, 129.6, 130.1, 136.0, 141.7, 155.3, 159.4; Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 87.66$; H, 6.19. Found: 87.66; H, 6.19.

1-Methyl-4-phenoxybenzene (Table 5, entry 15). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $2.34(\mathrm{~s}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=6.25,2 \mathrm{H}), 6.99(\mathrm{~d}, J=6.25 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.17(\mathrm{~m}, 3 \mathrm{H})$, 7.25-7.35 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, CDCl_{3}): $\delta=20.7,118.3,119.1,122.7$, 129.6, 130.2, 132.9, 154.7, 157.8; Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 84.75$; H, 6.57. Found: C, 84.75; H, 6.56.

1,4-Diphenoxybenzene (Table 5, entry 16). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.90-$ $6.93(\mathrm{~m}, 10 \mathrm{H}), 7.21-7.27(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=118.2,120.4$, 123.0, 129.7, 152.6, 157.7; Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 82.42; H, 5.38. Found: C, 82.42; H, 5.37.

Dibenzodioxin (Table 5, entry 17). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.86-6.87(\mathrm{~m}$, 8H); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=116.3,123.7,142.1$; Anal. Calcd. For $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{2}$: C, 78.25; H, 4.38. Found: C, 78.25; H, 4.39.

4-Phenoxybenzonitrile (Table 5, entry 21). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.82$ (d, $J=7.75 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=7.72 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.72 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=105.5$, $117.8,118.6,120.2,125.0,130.1,134.0,154.6,161.5$; Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}$: C, 79.98; H, 4.65; N, 7.17. Found: C, 79.97; H, 4.66; N, 7.16.

4-(P-tolyloxy)benzonitrile (Table 5, entry 23). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $2.40(\mathrm{~s}, 3 \mathrm{H}), 6.87(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.7,2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}$ (62.9 MHz, CDCl_{3}) $\delta=20.6,105.2,117.4,118.7,120.2,130.6,133.9,134.7$, 152.1, 161.7; Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{11}$ NO: C, 80.36; H, 5.30; N, 6.69. Found: C, 80.37; H, 5.30; N, 6.69.

2-Phenoxypyridine (Table 5, entry 25). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.90(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.67(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 163.8, 154.2, 147.8, 139.4, 129.7, 124.7, 121.2, 118.4, 111.5; Anal. Calcd. For $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}: \mathrm{C}, 77.17$; H, 5.30; N, 8.18. Found: C, 77.17; H, 5.29; N, 8.16.

1-(4-Phenoxyphenyl)ethanone (Table 5, entry 26). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=2.57(\mathrm{~s}, 3 \mathrm{H}), 6.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.22(\mathrm{~m}$,
$1 \mathrm{H}), 7.35-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=26.4,117.2,120.1,124.6,130.0,130.5,131.8 .155 .4,161.9,196.7$; Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 79.22; H, 5.70. Found: C, 79.22; H, 5.70.

1-Phenyl-1H-pyrrole (Table 6, entry 1). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.34$ (d, $J=2.25 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=2.25 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.42(\mathrm{~m}, 4 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=110.3,119.3,120.5,125.6,129.5$, 141.1; Anal. Calcd. For $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}: \mathrm{C}, 83.88 ; \mathrm{H}, 6.34$; N, 9.78. Found: C, 83.88; H, 6.34; N, 9.77. 1-Phenyl-1H-benzoimidazole (Table 6, entry 2). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.30-7.53(\mathrm{~m}, 8 \mathrm{H}), 7.81-7.88(\mathrm{~m}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=110.4,120.5,122.7,123.6,124.0,128.0,130.0,133.6,136.3,142.2,144.0 ;$ Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2}$: C, 80.39; H, 5.19; N, 14.42. Found: C, 80.39; H, 5.18; N, 14.41.

1-Phenyl-1H-indole (Table 6, entry 3). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.70(\mathrm{~d}, J$ $=2.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.55(\mathrm{~d}$, $J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $103.5,110.4,120.3,121.0,122.3,124.3,126.4,127.9,129.2,129.5,135.8,139.7$; Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}$: C, 87.01; H, 5.74; N, 7.25. Found: C, 87.01; H, 5.73; N, 7.25.

1-Phenyl-1H-1,2,4-triazole (Table 6, entry 4). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 7.40-7.51 (m, 3H), 7.66-7.70 (m, 2H), $8.11(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.9
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=120.0,128.2,129.8,131.5,140.8,152.6$; Anal. Calcd. For $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3}:$ C, 66.19; H, 4.86; N, 28.95. Found: C, 66.20; H, 4.86; N, 28.94.

1-Phenyl-1H-imidazole (Table 6, entry 5). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.19-$ $7.38(\mathrm{~m}, 7 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=118.2,121.4,127.4$, 129.8, 130.3, 135.5, 137.2; Anal. Calcd. For $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2}$: C, 74.98 ; H, 5.59; N, 19.43. Found: C, 74.98; H, 5.59; N, 19.42.

1-(\boldsymbol{P}-tolyl)-1H-pyrrole (Table 6, entry 6). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.33$ (s, $3 \mathrm{H}), 6.31$ (brs, 2H), 7.00 (brs, 2H), 7.20 (d, $J=8.40 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (d, $J=8.10 \mathrm{~Hz}$, 2 H); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.7,110.0,119.1,120.3,130.1,135.2$, 138.1; Anal. Calcd. For $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}: ~ \mathrm{C}, ~ 84.04 ; \mathrm{H}, 7.05$; N, 8.91. Found: C, 84.04; H, 7.06; N, 8.91.

1-(4-Methoxyphenyl)- $\mathbf{H} \boldsymbol{H}$-indole (Table 6 , entry 7). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $3.82(\mathrm{~s}, 3 \mathrm{H}), 6.63(\mathrm{~d}, J=3.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.25(\mathrm{~m}, 3 \mathrm{H})$, $7.34-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=9.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.5,102.8,110.3,114.6,120.0,120.9,122.1,125.9$, 128.2, 128.9, 132.7, 136.2, 158.1; Anal. Calcd. For $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}: 80.69$; H, 5.87; N, 6.27. Found: C, 80.68; H, 5.87; N, 6.27.

1-(4-Methoxyphenyl)-1 \boldsymbol{H}-benzoimidazole (Table 6, entry 8). ${ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.82(\mathrm{~s}, 3 \mathrm{H}), 7.12-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.53$ (m, 1H), 7.55-7.75 (m, 2H), 7.70-7.77 (m, 1H), $8.45(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.9
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=55.6,110.3,115.1,120.4,122.6,123.5,125.7,129.1,134.2$, 142.5, 143.7, 159.3; Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.98$; H, 5.39; N, 12.49. Found: C, 74.98; H, 5.38; N, 12.48.
 $2.40(\mathrm{~s}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.10 .(\mathrm{s}, 1 \mathrm{H}), 8.53$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.0,119.7,130.0,134.6,138.2,140.4$, 152.1; Anal. Calcd. For $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3}$: C, 67.90; H, 5.70; N, 26.40. Found: C, 67.91; H, 5.70; N, 26.40.

4-(1H-1,2,4-Triazol-1-yl)aniline (Table 6, entry 10). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.90($ brs, 2 H$), 6.75(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~s}$, $1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=122.0,128.5,140.6,146.7$, 152.1; Anal. Calcd. For $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4}$: C, 59.99; H, 5.03; N, 34.98. Found: C, 59.99; H, 5.04; N, 34.97.

1-(4-Nitrophenyl)-1H-pyrrole (Table 6, entry 11). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=6.40(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=112.4,119.0,119.3,125.4,144.6$, 145.1; Anal. Calcd. For $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 63.82; H, 4.28; N, 14.89. Found: C, C, 63.82; H, 4.27; N, 14.88.

1-(4-Nitrophenyl)-1 \boldsymbol{H}-benzoimidazole (Table 6, entry 12). ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.30-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.80(\mathrm{~m}, 2 \mathrm{H}), 8.00-8.07(\mathrm{~m}, 2 \mathrm{H}), 8.42-8.47$
$(\mathrm{m}, 2 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=111.5,120.6,123.7$, 124.1, 124.4, 126.0, 132.9, 141.9, 143.7, 144.6, 146.1; Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 65.27; H, 3.79; N, 17.56. Found: C, $65.27 ; \mathrm{H}, 3.78 ; \mathrm{N}, 17.55$.

1-(4-Fluorophenyl)-1H-benzoimidazole (Table 6, entry 13). ${ }^{1} \mathrm{H}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.08-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.72-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.93(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=110.1,116.8,120.2,122.8,123.7,126.4$, $132.5,133.3,141.0,142.8,161.9(J=249 \mathrm{~Hz})$; Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FN}_{2}: \mathrm{C}$, 73.57; H, 4.27; F, 8.95; N, 13.20. Found: C, 73.57; H, 4.27; F, 8.94, N, 13.20.
$162.0(\mathrm{~d}, J=248.53 \mathrm{~Hz}), 143.9,142.3,133.9,132.4,126.1(\mathrm{~d}, J=8.67 \mathrm{~Hz}), 123.9$, $122.9,120.7,117.1(\mathrm{~d}, J=23.12 \mathrm{~Hz}), 110.27$.

1-(4-Nitrophenyl)-1 \boldsymbol{H}-indole (Table 6, entry 14). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $6.80(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.80(\mathrm{~d}, J=$ $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.36-8.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=106.2,111.3,121.7,123.8,123.7,125.8,128.6$, 130.4, 135.0, 144.7, 145.0; Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}: C, 70.58 ; \mathrm{H}, 4.23 ; \mathrm{N}$, 11.76. Found: $70.58 ;$ H, $4.22 ;$ N, 11.75.

1-(4-Nitrophenyl)-1H-1,2,4-triazole (Table 6, entry 15). ${ }^{1} \mathrm{H}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.70(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=124.8,130.2,130.3,138.6,147.7,154.8$; Anal. Calcd. For $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, $50.53 ; \mathrm{H}, 3.18 ; \mathrm{N}, 29.46$. Found: $50.53 ; \mathrm{H}, 3.18 ; \mathrm{N}$,
29.45 .

1-(4-Fluorophenyl)-1 \boldsymbol{H}-pyrrole (Table 6, entry 16). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.33(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=2.25 \mathrm{~Hz}, 2 \mathrm{H})$, $6.34(\mathrm{~d}, J=2.25 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=110.4,116.4,119.6$, 122.3, 137.7, $159.4(J=397 \mathrm{~Hz})$; Anal. Calcd. For $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{FN}: \mathrm{C}, 74.52 ; \mathrm{H}, 5.00$; F , 11.79; N, 8.69. Found: C, 74.52; H, 5.01; F, 11.78; N, 8.68.

1-(4-Fluorophenyl)-1H-1,2,4-triazole (Table 6, entry 18). ${ }^{1} \mathrm{H}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~m}, 2 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=115.7$, 126.1, $136.8(J=197.0 \mathrm{~Hz}), 143.2,160.2$, 163.0; Anal. Calcd. For $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{FN}_{3}$: C, 58.89; H, 3.71; F, 11.64; N, 25.76. Found: C, 58.89; H, 3.70; F, 11.63; N, 25.76.

1-(4-Fluorophenyl)-1H-imidazole (Table 6, entry 19). ${ }^{1} \mathrm{H}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.14-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(62.9$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=116.5,118.4,123.4,130.1,134.7(J=194.0 \mathrm{~Hz}), 160.0,162.7$; Anal. Calcd. For $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{FN}_{2}$: C, 66.66; H, 4.35; F, 11.72; N, 17.27. Found: C, 66.67; H, 4.35; F, 11.71; N, 17.25.

4-(1H-pyrrol-1-yl)benzonitrile (Table 6 , entry 20). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=6.42(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=108.1,111.7,118.1,118.5,119.3,133.3,143.2$;
Anal. Calcd. For $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2}$: C, 78.55; H, 4.79; $\mathrm{N}, 16.66$. Found: C, 78.56; H, 4.79;

N, 16.65.
4-(1H-Benzo[d]imidazol-1-yl)benzonitrile (Table 6, entry 22). ${ }^{1} \mathrm{H}$ NMR (250
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.32-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.81-7.89(\mathrm{~m}, 3 \mathrm{H}), 8.13$ (d, $J=9.25 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=110.2,111.3,117.9,120.9$, $123.5,123.8,124.3,132.6,134.1,139.9,141.6,144.2$; Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{3}$:

C, 76.70; H, 4.14; N, 19.17. Found: C, 76.70; H, 4.15; N, 19.17.

