β -BaGa[B₄O₈(OH)](H₂O) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O): New Barium Galloborates Featuring Unusual [B₄O₈(OH)]²⁻ and [B₁₀O₁₈(OH)₅]¹¹⁻ Clusters

Hui Yang,^{a,b} Chun-Li Hu,^a Jun-Ling Song,^a Jiang-Gao Mao*,^a

5

Supporting Information

- Table S1. Important bond lengths (Å) for β -BaGa[B₄O₈(OH)](H₂O) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O)
- Table S2. Hydrogen bond lengths (Å) and bond angles(°) of β -BaGa[B₄O₈(OH)](H₂O) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O).
- 10 Table S3. The direction and magnitude of the dipole moments in the GaO₄, BO₃ and BO₄ polyhedra, and net dipole moment in the unit cell of Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O) (D= Debye, Ba²⁺ ions and water molecules were not considered).
 - Table S4. State energies (electronvolts) of the lowest conduction band (L-CB) and the highest valence band (H–VB) of β –BaGa[B₄O₈(OH)](H₂O) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O).
- 15 Figure S1. Experimental and simulated powder X-ray diffraction patterns of β -BaGa[B₄O₈(OH)](H₂O) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O). X-ray diffraction patterns of the residues of two compounds which were obtained after thermal annealing (at 700 °C for 5 h).
- Figure S2. View of the coordination environments around the Ba atoms in β -20 BaGa[B₄O₈(OH)](H₂O).
 - Figure S3. View of the coordination environments around the Ba atoms in $Ba_4Ga[B_{10}O_{18}(OH)_5](H_2O)$.
 - Figure S4. UV-vis-NIR absorption spectra of β -BaGa[B₄O₈(OH)](H₂O) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O).
- 25 Figure S5. UV-vis-NIR diffuse reflectance absorption spectra of β -BaGa[B₄O₈(OH)](H₂O) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O).

Figure S6. IR spectra of β -BaGa[B₄O₈(OH)](H₂O) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O).

- Figure S7. Thermogravimetric analyses of β -BaGa[B₄O₈(OH)](H₂O) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O) and α -BaGa[B₄O₈(OH)](H₂O).
- 30 Figure S8. Ferroelectric hysteresis loop of Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O)

$\begin{array}{c c} \beta-\text{BaGa}[\text{B}_4\text{O}_8(\text{OH})](\text{H}_2\text{O}) (1) \\ \hline \text{Ba}(1)-O(1\text{W}) & 2.699(6) & \text{B}(2)-O(8) \\ \hline \text{Ba}(1)-O(1)\#1 & 2.766(5) & \text{B}(2)-O(4) \\ \hline \text{Ba}(1)-O(7) & 2.767(4) & \text{B}(2)-O(3) \\ \hline \text{Ba}(1)-O(5)\#2 & 2.809(4) & \text{B}(2)-O(5) \\ \hline \end{array}$	1.453(9) 1.468(9)
Ba(1)-O(1W) $2.699(6)$ $B(2)-O(8)$ $Ba(1)-O(1)#1$ $2.766(5)$ $B(2)-O(4)$ $Ba(1)-O(7)$ $2.767(4)$ $B(2)-O(3)$ $Ba(1)-O(7)$ $2.809(4)$ $B(2)-O(3)$	1.453(9) 1.468(9)
Ba(1) - O(1)#1 $2.766(5)$ $B(2) - O(4)$ $Ba(1) - O(7)$ $2.767(4)$ $B(2) - O(3)$ $Ba(1) - O(5)#2$ $2.809(4)$ $B(2) - O(3)$	1.468(9)
$\begin{array}{cccc} Ba(1) \cdot O(7) & 2.767(4) & B(2) \cdot O(3) \\ Br(1) \cdot O(5) \# 2 & 2.809(4) & B(2) \cdot O(5) \\ \end{array}$	
$P_{2}(1) O(5) + 2 = 2 800(4) = P(2) O(5)$	1.469(9)
B(1)-O(3)#2 2.009(4) $B(2)-O(3)$	1.483(8)
Ba(1)-O(4) 2.833(4) $B(4)-O(9)$	1.346(9)
Ba(1)-Q(9)#3 2.912(4) $B(4)-Q(5)$	1.356(9)
Ba(1)-O(8)#2 2.920(4) B(4)-O(6)	1.396(8)
Ba(1)-O(9)#4 2.931(5) B(3)-O(4)	1.347(8)
Ba(1)-O(6)#3 2.965(4) $B(3)-O(8)$	1.364(8)
$Ba(1)-Q(3)\#2 \qquad 3.063(5) \qquad B(3)-Q(6)$	1.411(8)
Ga(1)-O(7)#5 1.855(4) $B(1)-O(2)$	1.339(9)
Ga(1)-O(9)#3 1.865(4) $B(1)-O(1)$	1.375(9)
Ga(1)-O(8) 1.882(4) $B(1)-O(3)$	1.376(8)
Ga(1)-O(2) 1.932(5)	
Ga(1)-O(8)#6 2.055(5)	
$Ba_{4}Ga[B_{10}O_{18}(OH)_{5}](H_{2}O) (2)$	
Ba(1)-O(23)#1 $2.732(4)$ Ga(1)-O(1)	1.846(4)
Ba(1)-O(9) $2.772(4)$ Ga(1)-O(19)#10	1.869(4)
Ba(1)-O(2)#2 2.785(3) B(1)-O(1)	1.363(7)
Ba(1)-O(20)#1 2.812(3) $B(1)-O(3)$	1.372(7)
Ba(1)-Q(3) 2.922(4) $B(1)-Q(2)$	1.375(7)
Ba(1)-Q(6)#3 2.929(4) $B(2)-Q(4)$	1.438(7)
Ba(1)-O(11) 2.957(4) B(2)-O(8)	1.455(7)
Ba(1)-Q(7) 2.977(4) $B(2)-Q(5)$	1.457(7)
Ba(1)-O(17)#1 3.000(3) $B(2)-O(2)$	1.554(7)
Ba(1)-Q(5)#2 3.050(4) $B(3)-Q(7)$	1.444(7)
Ba(2)-O(7)#4 2.722(3) B(3)-O(4)	1.460(7)
Ba(2)-Q(5)#3 2.827(4) $B(3)-Q(6)$	1.470(7)
Ba(2)-O(11)#5 2.834(4) B(3)-O(3)	1.525(7)
Ba(2)-O(1W) 2.879(4) $B(4)-O(8)$	1.455(7)
Ba(2)-O(10)#4 2.879(4) B(4)-O(9)	1.485(7)
Ba(2)-O(2) 2.881(4) $B(4)-O(7)$	1.489(6)
Ba(2)-O(9) 2.893(4) B(4)-O(10)	1.498(6)
Ba(2)-O(14) 3.117(4) $B(5)-O(11)$	1.458(7)
Ba(2)-O(8) 3.180(4) B(5)-O(12)	1.458(7)
Ba(3)-O(18) 2.746(4) B(5)-O(9)	1.468(7)
Ba(3)-O(22)#6 2.762(4) B(5)-O(14)	1.521(7)
Ba(3)-O(6)#7 2.784(3) B(6)-O(10)	1.429(6)
Ba(3)-O(17) 2.814(4) B(6)-O(12)	1.465(7)
Ba(3)-O(21)#8 2.816(4) B(6)-O(13)	1.470(7)
Ba(3)-O(20)#6 2.818(4) B(6)-O(15)	1.523(7)
Ba(3)-O(3)#7 2.824(3) B(7)-O(16)	1.356(7)
Ba(3)-O(13) 2.841(4) B(7)-O(15)	1.373(8)
Ba(3)-O(19)#8 2.888(4) B(7)-O(14)	1.399(7)
Ba(3)-O(15) 2.914(3) B(8)-O(20)	1.435(7)
Ba(4)-O(8) 2.652(4) B(8)-O(17)	1.444(7)
Ba(4)-O(13)#5 2.786(4) B(8)-O(16)	1.489(6)
Ba(4)-O(14)#8 2.866(4) B(8)-O(18)	1.523(7)
Ba(4)-O(21)#8 2.872(4) B(9)-O(18)	1.361(7)
Ba(4)-O(1W) 2.890(4) B(9)-O(19)	1.366(7)
Ba(4)-O(10) 2.903(4) B(9)-O(21)	1.374(7)
Ba(4)-O(22)#8 2.958(3) B(10)-O(20)	1.440(7)
Ba(4)-O(16)#8 2.958(4) B(10)-O(22)	1.455(7)
Ba(4)-O(15) 2.997(4) B(10)-O(23)	1.465(7)
Ga(1)–O(17)#1 1.806(4) B(10)–O(21)	1.519(7)
Ga(1)–O(22)#9 1.816(4)	

Table S1. Important bond lengths (Å) for β -BaGa[B₄O₈(OH)](H₂O) (1) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O) (2)^{*a*}

5 $\,^{a}$ Symmetry transformations used to generate equivalent atoms:

For 1: #1 -x+1, -y+1, -z; #2 x+1, y, z; #3 -x, -y+1, -z; #5 x-1/2, y-1/2, z; #6 -x-1/2, -y+1/2, -z.

For 2: #1 -x+1, -	y+1, -z; #	2 x-1, y, z; #3 x-1/2	2, y-1/2, z; #4	x+1/2, y-1/2, z; #5 x+1,	y, z; #6 x-1/2, y+	1/2, z; #7 x-1/2,	-y+3/2, z-1/2; #8 x+1/2,
y+1/2,	Z;	#9	x+1/2,	-y+1/2,	z+1/2;	#10	x+1,-y+1,z+1/2.

β -BaGa[B ₄ O ₈ (OH)](H ₂ O) (1)						
O1-H8A…O2	0.820	1.892	2.700(7)	168.68		
O1W-H1WA…O3	0.850	1.888	2.696(8)	158.24		
$Ba_4Ga[B_{10}O_{18}(OH)_5](H_2O)$ (2)						
O5-H5A…O12	0.82	1.87	2.685(5)	169.1		
O11-H11A…O4	0.82	1.91	2.707(5)	165.2		
O23-H23A…O1	0.82	2.19	2.996(6)	167.2		
O1W-	0.85	2.15	2,812(5)	134.6		
H1WA…O19	0.85		2.015(5)			
O1W-	0.85	2 17	2 666(5)	117.3		
H1WB…O12	0.05	2.1/	2.000(3)			

Table S2. Hydrogen bond lengths (Å) and bond angles(°)

Table S3 The direction and magnitude of the dipole moments in the GaO₄, BO₃ and BO₄ polyhedra, and net dipole moment in the unit cell of Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O) (**2**) (D= Debye, Ba²⁺ ions and water molecules were not considered).

Species	Total magnitude	x (D)	y (D)	z (D)
B(1)O ₃	1.33	-0.62	±0.72	-0.92
B(7)O ₃	1.46	-0.47	±1.36	0.26
B(9)O ₃	0.98	-0.017	±0.96	0.20
B(2)O ₄	2.10	0.62	±1.64	1.15
B(3)O ₄	1.56	0.67	±0.37	1.35
B(4)O ₄	0.84	-0.49	±0.67	-0.082
B(5)O ₄	1.17	-0.30	±0.33	-1.09
B(6)O ₄	2.14	-1.12	±1.00	-1.52
B(8)O ₄	1.98	-1.97	0	0.23
B(10)O ₄	0.97	-0.53	±0.80	0.072
GaO ₄	1.17	0.89	±0.57	0.49
Net dipole moment (a unit cell)	13.44	-13.42	0	0.67

	<i>k</i> -point	L-CB	H-VB
	V(0.000 0.000 0.500)	5.43195	-0.01745
β -BaGa[B ₄ O ₈ (OH)](H ₂ O) (1)	G(0.000 0.000 0.000)	5.17593	-0.02285
	F(0.000 0.500 0.000)	6.23751	-0.08155
	Q(0.000 0.500 0.500)	6.32449	-0.02391
	Z(0.000 0.000 0.500)	5.90506	-0.0028
	G(0.000 0.000 0.000)	5.17593	-0.02285
	Z(0.000 0.000 0.500)	4.39315	-0.00103
Ba ₄ Ga[B ₁₀ O ₁₈ (OH) ₅](H ₂ O) (2)	G(0.000 0.000 0.000)	4.29691	-0.00047
	Y(0.000 0.500 0.000)	4.58321	-0.00352
	A(-0.500 0.500 0.000)	4.92749	-0.00735
	B(-0.500 0.000 0.000)	4.96056	-0.1273
	D(-0.500 0.000 0.500)	4.98638	-0.01279
	E(-0.500 0.500 0.500)	4.92245	-0.00741
	C(0.000 0.500 0.500)	4.64867	-0.00506

Table S4. State energies (electronvolts) of the lowest conduction band (L-CB) and the highest valence band (H-VB) of β -BaGa[B₄O₈(OH)](H₂O) (**1**) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O) (**2**)

(a)

Figure S1. Experimental and simulated powder X-ray diffraction patterns of β -BaGa[B₄O₈(OH)](H₂O) (1) (a) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O) (2) (b). X-ray diffraction patterns of the residues of β -BaGa[B₄O₈(OH)](H₂O) (1) (c) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O) (2) (d) which were obtained after thermal annealing (at 700 °C for 5 h).

Figure S2 View of the coordination environments around the Ba atoms in β -BaGa[B₄O₈(OH)](H₂O) (1). Ba and O atoms are drawn as yellow and red circles, respectively.

Figure S3. View of the coordination environments around the Ba atoms in $Ba_4Ga[B_{10}O_{18}(OH)_5](H_2O)$ (2). Ba and O atoms are drawn as yellow and red circles, respectively.

Figure S4. UV-vis-NIR absorption spectra of β -BaGa[B₄O₈(OH)](H₂O) (1) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O) (2).

(b)

Figure S5. UV-vis-NIR diffuse reflectance absorption spectra of β -BaGa[B₄O₈(OH)](H₂O) (1) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O) (2).

Figure S6. IR spectra of β -BaGa[B₄O₈(OH)](H₂O) (1) and Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O) (2).

Figure S7. Thermogravimetric analyses of β -BaGa[B₄O₈(OH)](H₂O) (1) (a), Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O) (2) (b) and α -BaGa[B₄O₈(OH)](H₂O) (c).

Figure S8. Ferroelectric hysteresis loop of compound Ba₄Ga[B₁₀O₁₈(OH)₅](H₂O) (2)