Supporting Information

Direct catalytic synthesis of densely substituted 3-formylpyrroles from imines and 1,4-ketoaldehydes

Indresh Kumar, ${ }^{*,}{ }^{a}$ Nisar A. Mir, ${ }^{a}$ Panduga Ramaraju, ${ }^{a}$ Deepika Singh, ${ }^{b}$ Vivek K. Gupta ${ }^{c}$ and Rajnikant ${ }^{c}$
${ }^{a}$ Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, (Rajasthan) India
E-mail: indresh.chemistry@gmail.com,indresh.kumar@bits-pilani.ac.in
${ }^{b}$ Instrumentional Division, IIIM-CSIR Lab, Jammu 180 001, India
${ }^{c}$ X-ray Crystallography Laboratory, Post-Graduate Department of Physics \& Electronics, University of Jammu, Jammu 180 006, India

Table of Contents
General Experimental Methods S2
Synthesis of Ketoaldehyde 2 S2-S3
Typical procedure for reaction and plausible Mechanism S4
Characterization data for compounds 4aa- 4av and 4ac-4ec and 5 S5-S15
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR copies all new compounds S16-S42
Single Crystal X-ray and data for 4aq. S43-S46

General Experimental Methods:

All reactions under standard conditions were monitored by thin-layer chromatography (TLC) on SiO_{2} gel F-254 plates. Unless otherwise noted all reactions have been carried out with distilled and dried solvents. Oven $\left(120{ }^{\circ} \mathrm{C}\right)$ dried glassware were used. All work up and purification were carried out with reagent grade solvents in air. The normal column chromatography was performed on silica gel (100-200 mesh) and Flash column chromatography was performed on silica gel (230-400 meshes) using the mixture of Hexane-EtOAc as eluting solvent. All reagents were of analytical grade and used without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a BRUKER-AV400 (400 MHz and 75 MHz) spectrometer in CDCl_{3} solution and spectral data were reported in ppm relative to tetramethylsilane (TMS) as internal standard. High resolution mass spectra were recorded using quadrupole electrospray ionization (ESI) technique. Infrared (FT-IR) spectra were recorded on a ABB Bomen MB 3000 FTIR Spectrophotometer system using KBr pellets. Melting points were recorded in open glass capillary tubes on a MPA 120-automated melting point apparatus and are uncorrected.

General Experimental procedure for the synthesis of Hydroxy Ketones from Lactones ${ }^{(1)}$:

Synthesis of 4-Hydroxy-1-phenylbutan-1-one:

Bromobenzene ($1.81 \mathrm{~g}, 11.6 \mathrm{mmol}, 1.0$ equiv.) in dry THF (10.0 mL) was added drop wise with the help of syringe to a stirred solution of crushed magnesium turnings $(0.56 \mathrm{~g}, 23.2 \mathrm{mmol}, 2.0$ equiv.) in dry THF (10 mL , freshly distilled from sodium/benzophenone) at room temperature for one hour under inert atmosphere. This prepared Grignard reagent solution was cooled at $0{ }^{\circ} \mathrm{C}$ and then added drop wise through canula to the stirred solution of butyrolactone ($1.0 \mathrm{~g}, 11.6$ mmol, 1 equiv.) in THF (10 mL) at $0^{\circ} \mathrm{C}$ over 30 minutes. The combined reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for additional 2 h and then quenched by $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL}$, saturated) and organic
layer was separated. The aqueous layer was again extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined extracts were washed by brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}$, filtered, and concentrated in vacuo. The residue was purified by silica gel (100-200 mesh) column chromatography (Hexane: EtOAc, 20:1 to 5:1) to give the desired keto-alcohol as white semi solid (1.30 g, 68\% yield).

White semi solid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.89-1.96(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.65(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{bs}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;$

4-Hydroxy-1-phenylbutan-1-one ($0.5 \mathrm{~g}, 3.0 \mathrm{mmol}, 1$ equiv.) solution in dichloromethane (2.5 $\mathrm{mL})$ was added to a stirred solution of $\operatorname{PCC}(0.98 \mathrm{~g}, 4.6 \mathrm{mmol}, 1.5$ equiv. $)$ and celite $(0.25 \mathrm{~g})$ in dichloromethane (2.5 mL) and stirred for 3 hrs at room temperature. The reaction was monitored by TLC till completion. Filter the reaction mixture over a pad of $\mathrm{Na}_{2} \mathrm{SO} 4$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (Hexane: EtOAc $=90: 10$ to $70: 30$) to give the desired product $\mathbf{2 a}$ as a yellow oily liquid ($0.272 \mathrm{~g}, 55 \%$ yield).

Yellow oily liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.79-2.97(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.40-7.48 (m, 2H), $7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 9.90(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.97,37.54,128.00(2 \mathrm{C}), 128.60(2 \mathrm{C}), 133.27,136.37,197.83,200.70$; IR $(\mathrm{KBr}) / \mathrm{cm}^{-} 2923,1728,1681,1211,979,694 ;$ HRMS (ESI): Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 163.0759; Found 163.0763.
(1) S.-B. Yang, F.-F. Gan, G.-J. Chen, P.-F. Xu, SynLett., 2008, 16, 2532.

Typical procedure for the synthesis of 2,5-diaryl pyrrole-3-carboxaldehydes (4):

4-Oxo-4-phenylbutanal 2a ($0.9 \mathrm{mmol}, 3 \mathrm{M}$ solution) was added to a mixture of preformed N PMP aldimine $3 \mathbf{c}(0.3 \mathrm{mmol})$ and L-proline (0.06 mmol) in DMSO (3.0 mL) at room temperature. The reaction mixture was stirred at room temperature until the aldimine was consumed as monitored by TLC. The reaction was quenched with cold water (10 mL) and extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification through silica gel column chromatography by eluting the mixture of EtOAc/Hexane to give 2,5-diaryl pyrrole 3-carbxaldehydes 4 with high yields (70\%). In almost all the cases, we also obtained about $\leq 10 \%$ of aromatic aldehyde due to cleavage of corresponding imine under these conditions.

Figure 1: Plausible mechanism of the cascade [4+2] annulation reaction

1-(4-methoxyphenyl)-2-(2-nitrophenyl)-5-phenyl-1H-pyrrole-3-carbaldehyde (4aa):

Yellow pasty liquid, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.68(\mathrm{~s}, 3 \mathrm{H}), 6.67(\mathrm{~s}$, $1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.02-7.05 (m, 3H), 7.26-7.30 (m, 2H), 7.68-7.73(m, 2H), 9.86(s, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.41,109.30,114.61$ (2C), 122.32, 125.96, $126.95,128.03$ (2C), 128.11 (2C), 128.31 (2C), 128.54 (2C), 129.35 (2C), 129.60, 131.80, $133.15,136.14,142.28,159.58,185.93$; IR (KBr)/cm ${ }^{-1} 2932,1674,1512,1250,1173$; HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$399.1346; Found 399.1348.

1-(4-methoxyphenyl)-2-(3-nitrophenyl)-5-phenyl-1H-pyrrole-3-carbaldehyde (4ab):

Reddish brown solid (M.P $=154-155{ }^{\circ} \mathrm{C}$), ${ }^{1} \mathrm{H}$ NMR (400) MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 3.75(\mathrm{~s}, 3 \mathrm{H}), 6.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 3 \mathrm{H}) 7.41(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}) 7.53-7.57(\mathrm{~m}, 1 \mathrm{H}), 8.05-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.22(\mathrm{~m}, 1 \mathrm{H})$, $9.73(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.33,107.97,114.33$ (2C), 123.20, 124.39, 125.76, $125.93,127.54,128.21(2 \mathrm{C}), 128.75$ (2C), 129.07, 129.56 (2C), 131.17, 131.33, 136.83, $137.63,140.24,147.65,159.23,185.98 ; \mathrm{IR}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2932,2854,1666,1512,1342,1172$; HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$399.1346; Found 399.1342.

1-(4-methoxyphenyl)-2-(4-nitrophenyl)-5-phenyl-1H-pyrrole-3-carbaldehyde (4ac);

Yellow solid (M.P $=163-164{ }^{\circ} \mathrm{C}$), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 3.77 (s, 3H), 6.75 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=3.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.15$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 9.75(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.35$,
$108.33,114.35$ (2C), 123.18 (2C), 124.57, 127.59, 127.97, 128.22 (2C), 128.78 (2C), 129.46 (2C), 131.81 (2C), $133.04,133.23,137.91,140.19,147.28,159.25,186.04$; IR (KBr$) / \mathrm{cm}^{-1} 2924$, 2854, 1674, 1596, 1342, 1172; HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$399.1346; Found 399.1338.

2-(2-fluorophenyl)-1-(4-methoxyphenyl)-5-phenyl-1H-pyrrole-3-carbaldehyde (4ad):

Reddish solid (M.P $\left.=145-146{ }^{\circ} \mathrm{C}\right){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.73(\mathrm{~s}$, $3 \mathrm{H}), 6.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.01($ $\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) 7.12(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 9.62(\mathrm{~s}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.26,107.29,113.81,115.66,115.83$, $123.78,123.81,124.63,127.26,128.13$ (2C), 128.64 (2C), 129.10, 129.95, 131.16, 131.22, $131.58,133.30,137.43,138.03,158.90,161.33,186.36$; $\mathrm{IR}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2932,2854,1659,1250$, 1180, 1026; HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{FNO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 372.1400$; Found 372.1409.

2-(3-fluorophenyl)-1-(4-methoxyphenyl)-5-phenyl-1H-pyrrole-3-carbaldehyde (4ae):

Yellow liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.76$ (s, 3H), 6.73 (d, $J=$ 8.9 Hz, 2H), 6.88-6.91 (m, 3H), 6.96 (s, 1H), 6.99-7.05 (m, 2H), 7.09-
$7.11(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.71(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.34,107.36,114.14$ (2C), 115.66, $118.22,124.18,125.36$ (2C), $127.08,127.34,128.15,128.58$ (2C), 128.79, 129.50, 129.64, 129.75, 131.55, 137.13, 159.07, 163.30, 186.63; IR (KBr)/cm² 2908, 1680, 1247, 1174; HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{FNO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$372.1400; Found 372.1395.

2-(4-fluorophenyl)-1-(4-methoxyphenyl)-5-phenyl-1H-pyrrole-3-carbaldehyde (4af):

Yellow liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.76$ (s, 3H), 6.73 (d, $J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=8.7 \mathrm{~Hz}$, 2H), 7.09-7.11 (m, 2H), 7.16-7.22 (m, 5H), $9.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.33,107.21,114.08(2 \mathrm{C}), 115.17,115.35,124.02$, (2C), 158.93, 176.15, 186.76; IR (KBr)/ $\mathrm{cm}^{-1} 2924,2854,1659,1218,1157,1049$; HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{FNO}_{2}\left(\mathrm{MH}^{+}\right)$372.1400; Found 372.1397.

2-(2-chlorophenyl)-1-(4-methoxyphenyl)-5-phenyl-1H-pyrrole-3-carbaldehyde (4ag):

Red oily liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.72$ (s, 3 H), 6.67 (d, $J=$ $9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.14(\mathrm{~m}, 2 \mathrm{H})$, 7.19-7.23 (m, 4H), 7.27-7.31 (m, 2H), $7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.53(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.26,106.98,113.80(2 \mathrm{C}), 124.39$, 126.25 (2C), 127.20 (2C), 129.11 (2C), 129.30, 129.51 (2C), 129.96, 135.53 (2C), 131.65, 133.49, 135.57, 136.96, 141.26, 158.89, 186.21; IR (KBr)/cm ${ }^{-1} 2924,2854,1666,1250,1180 ;$ HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClNO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$388.1104; Found 388.1106.

2-(3-chlorophenyl)-1-(4-methoxyphenyl)-5-phenyl-1H-pyrrole-3-carbaldehyde (4ah):

Brownish red oily liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.75$ (s, 3 H), $6.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=7.0 \mathrm{~Hz}, 5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 6 \mathrm{H})$, $9.69(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.38,107.43,114.18(2 \mathrm{C})$, $124.28,127.36,127.88$ (2C), 128.16 (2C), 128.80 (2C), 129.23, 129.31, 129.57 (2C), 131.14, $131.34,131.56,134.00,137.21,143.03,159.13,186.53 ;$ IR (KBr)/cm${ }^{-1} 2932,1666,1250,1165$, 1034; HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClNO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$388.1104; Found 388.1094.

2-(4-chlorophenyl)-1-(4-methoxyphenyl)-5-phenyl-1H-pyrrole-3-carbaldehyde (4ai):

Yellow viscous oily liquid, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.76(\mathrm{~s}, 3 \mathrm{H})$,
$6.74(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.08-$
7.11 (m, 2H), 7.13 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.30$
$(\mathrm{m}, 3 \mathrm{H}) 9.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.31,107.42$,
114.14 (2C), 124.08, 127.30, 128.12 (2C), 128.34 (2C), 128.75 (2C), 129.54 (2C), 129.72, 1659, 1250, 1157, 1088; HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClNO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 388.1104$; Found 388.1103.

2-(2-bromophenyl)-1-(4-methoxyphenyl)-5-phenyl-1H-pyrrole-3-carbaldehyde (4aj):

Reddish viscous oil, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.69$ (s, 3H), 6.64 (d, J $=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.22-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.50(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 55.22,106.78,113.74(2 \mathrm{C}), 124.12,125.89,126.78,127.15$, 128.12 (2C), 128.48, (2C), 129.14 (2C), 129.84, 130.63, 131.32, 131.57, 132.58, 133.48, 136.74, 142.89, 158.82, 186.22; IR (KBr)/cm ${ }^{-1} 2924,2854,1674,1242,1173,1034 ;$ HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrNO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 432.0599$; Found 432.0605

2-(3-bromophenyl)-1-(4-methoxyphenyl)-5-phenyl-1H-pyrrole-3-carbaldehyde (4ak):

Slight yellow solid (M.P $\left.=170-171^{\circ} \mathrm{C}\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.73(\mathrm{~s}, 3 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}$, 1H), 7.11-7.17 (m, 5H), 7.20-7.24 (m, 4H), $9.76(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.11,107.17,113.99(2 \mathrm{C}), 121.76,124.05,124.83$, 127.18, 127.80, 127.97 (2C), 128.07, 128.14, 128.55 (2C), 129.31, 129.37 (2C), 129.53, 131.28, 133.74 137.01, 158.94, 186.16; IR (KBr)/cm ${ }^{-1}$ 2924, 2854, 1659, 1250, 1157, 1041; HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrNO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 432.0599$; Found 432.0602.

2-(4-bromophenyl)-1-(4-methoxyphenyl)-5-phenyl-1H-pyrrole-3-carbaldehyde (4al):

White solid (M.P $\left.=167-168{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.61$ $(\mathrm{s}, 3 \mathrm{H}), 6.58(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H})$,
$6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=6.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-7.08(\mathrm{~m}$,
$3 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 9.54(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 55.31,107.42,114.13(2 \mathrm{C}), 122.99,124.00,125.31,127.30,127.83,128.12$ (2C), 128.54, 128.73 (2C), 129.51 (2C), 131.27 (2C), 132.55 (2C), 137.07, 142.65, 158.97, 186.57; IR $(\mathrm{KBr}) / \mathrm{cm}^{-1} 2932,2847,1666,1250,1168,1034$; $\mathrm{HRMS}(\mathrm{ESI}):$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrNO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 432.0599; Found 432.0595.

2-(3-bromo-4-fluorophenyl)-1-(4-methoxyphenyl)-5-phenyl-1H-pyrrole-3carbaldehyde

(4am):

Yellow liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.77(\mathrm{~s}, 3 \mathrm{H}), 6.75(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.00-7.11(\mathrm{~m}, 4 \mathrm{H})$, 7.20-7.23 (m, 3H), $7.46(\mathrm{dd}, 6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.38,107.42,108.91,114.22$ (2C), 116.06, $116.24,124.22,127.40,128.17$ (2C), 128.73 (2C), 129.52 (2C), 131.36, 131.65, 131.71, 136.08, $137.19,142.94,159.11,176.12,186.30$; IR (KBr)/cm ${ }^{-1} 2924,2854,1666,1250,1157,1041 ;$ HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{BrFNO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 450.0505$; Found 450.0511.

1-(4-methoxyphenyl)-5-phenyl-2-(4-(trifluoromethyl)phenyl)-1H-pyrrole carbaldehyde (4an):

Yellow oily liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.75(\mathrm{~s}, 3 \mathrm{H}), 6.72$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.04-7.15$ (m, 2H), 7.15-7.23 (m, 3H), $7.26(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 9.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 55.32, 107.68, 114.20 (2C), 124.32, 124.94, 124.97, 127.41, 127.84 (2C), 128.16 (2C), 128.77(2C), 129.49 (2C), 131.37 (2C), 133.17, 137.38, 141.85, 142.94 (2C), 159.06, 186.41; IR (KBr$) / \mathrm{cm}^{-1} 2924$, 2854, 1674, 1250, 1118; HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$422.1368; Found 422.1374.

1-(4-methoxyphenyl)-2,5-diphenyl-1H-pyrrole-3-carbaldehyde (4ao):

Yellow viscous liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.75(\mathrm{~s}, 3 \mathrm{H}), 6.71$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=7.4$ $\mathrm{Hz}, 5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 3 \mathrm{H}), 9.69(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.32$, 107.17, 114.00 (2C), 123.98, 123.37 (2C), 127.20, 127.88, 128.42, 128.59 (2C), 128.80 (2C), 129.45, 129.65 (2C), 130.06, 131.20
 (2C), 131.77, 136.81, 158.89, 187.11; IR (KBr)/ $\mathrm{cm}^{-1} 2924,2854,1666$, 1242, 1165, 1034; HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 354.1494; Found 354.1498.

1-(4-methoxyphenyl)-2-(naphthalen-1-yl)-5-phenyl-1H-pyrrole-3-carbaldehyde (4ap):
Deep red pasty liquid, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.62(\mathrm{~s}, 3 \mathrm{H}), 6.51(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.82$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.70$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.85(\mathrm{~m}, 2 \mathrm{H}), 9.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.16$, $106.86,113.68$ (2C), $124.64,125.34,125.80,126.15,126.81,127.16,127.28,128.18$ (2C), 128.58 (2C), $128.87,129.53,130.21,130.46,131.82,133.13,133.76,137.01,143.11,157.68$, 157.87, 158.64, 186.79; IR (KBr)/cm ${ }^{-1}$ 3016, 1658, 1512, 1249, 1172; HRMS (ESI): Calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$404.1650; Found 404.1654.

1-(4-methoxyphenyl)-2-(naphthalen-2-yl)-5-phenyl-1H-pyrrole-3-carbaldehyde (4aq):

White solid (M.P $\left.=176-177{ }^{\circ} \mathrm{C}\right){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.72(\mathrm{~s}$, $3 \mathrm{H}), 6.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H})$, $7.12-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{dd}, J=6.1 \mathrm{~Hz}, 3.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=6.0,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~s}$, $1 \mathrm{H}), 9.75(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.29,107.33,114.07(2 \mathrm{C}), 124.25,126.61$, $126.89,127.24,127.60,127.66,127.81,127.88,128.15$ (2C), 128.20, 128.81 (2C), 129.60 (2C), $130.06,131.19,131.74,132.60,132.69,136.94,139.28,158.86,187.24 ;$ IR (KBr$) / \mathrm{cm}^{-1} 2922$, 1668, 1248, 1172; HRMS (ESI): Calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$404.1650; Found 404.1648.

Reddish brown pasty liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.76$ (s, 3 H), $6.73(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.55(\mathrm{td}, J=7.8,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=4.1,1 \mathrm{H}), 9.91(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $55.33,107.78,114.00$ (2C), 122.60, 125.10, 126.10, $127.30,128.11$ (2C), 128.89 (2C), 129.51 (2C), 130.19, 131.64, 135.73, 137.23, 141.75, 149.24, 149.53, 158.97, 187.58; IR (KBr)/ cm^{-1} 2932, 1659, 1250, 1173; HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$355.1446; Found 355.1442 .

1-(4-methoxyphenyl)-5-phenyl-2-(pyridin-3-yl)-1H-pyrrole-3-carbaldehyde (4as):

Reddish brown pasty liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.76$ (s, 3 H), 6.73 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.12$ $(\mathrm{m}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=3.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}$, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.71(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 55.33, $107.83,114.31$ (2C), $122.90,124.69,126.06,127.47,128.18$ (2C), 128.77 (2C), 129.35, 129.63 (2C), 131.33, 137.71, 138.39, 139.72, 149.08, 150.93, 159.22, 186.12; IR (KBr)/cm ${ }^{-1} 2932,1666$, 1250, 1180, 1026; HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$355.1446; Found 355.1448.

1-(4-methoxyphenyl)-5-phenyl-2-(pyridin-4-yl)-1H-pyrrole-3-carbaldehyde (4at):

Yellow pasty liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.76$ (s, 3H), 6.74 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.09(\mathrm{~m}, 4 \mathrm{H})$, $7.21(\mathrm{~m}, 3 \mathrm{H}), 8.55(\mathrm{bs}, 2 \mathrm{H}), 9.75(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $55.31,108.03,114.25$ (2C), 124.41, 125.41, 127.50 (2C), 128.18 (2C),
128.73 (2C), $129.24,129.38$ (2C), $131.08,137.57,137.83,139.88,149.32$ (2C), 159.19, 186.07; IR (KBr) $/ \mathrm{cm}^{-1} 2931,1674,1250,1173,1026 ;$ HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 355.1446; Found 355.1444.

Yellowish orange pasty liquid, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.78(\mathrm{~s}, 3 \mathrm{H})$, $6.78(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-7.00(\mathrm{~m}, 5 \mathrm{H}), 7.11-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=$ 3.7 Hz, 4H), $9.86(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.36,89.71$, 107.40, 114.08 (2C), $121.88,126.81,127.38,127.88$ (2C), 128.15 (2C), 128.73 (2C), 129.87 (2C), 130.81, 131.50, 137.70, 142.99, 159.38, 186.90; IR (KBr)/ $\mathrm{cm}^{-1} 2924$, 2854, 1666, 1242, 1173 1034; Found 356.0295. HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 360.1058; Found 360.1064.

1-(4-methoxyphenyl)-5-phenyl-2-(p-tolyl)-1H-pyrrole-3-carbaldehyde (4av):

Brown pasty liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}), 6.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}$, $1 \mathrm{H}), 7.08(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=$
$7.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.69(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.67,55.34$, $107.09,113.97$ (2C), $123.88,125.34,126.41,127.12,127.86,128.08,128.57,128.75$ (2C), 129.62, 130.16, 131.03 (2C), 131.84, 136.69, 138.36, 143.00, 144.79, 158.84, 187.16; IR $(\mathrm{KBr}) / \mathrm{cm}^{-1} 2914,1668,1248$, 1178; HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 368.1650$; Found 368.1648.

1-(4-methoxyphenyl)-2-(4-nitrophenyl)-5-(p-tolyl)-1H-pyrrole-3-carbaldehyde (4bc):

Yellow solid, $\left(\mathrm{M} . \mathrm{P}=156-157^{\circ} \mathrm{C}\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.30(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=$
$8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 9.74(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.15,55.37,107.98,114.34$ (2C), 123.19 (2C), 124.55, 128.12, 128.67 (2C), 128.98 (2C), 129.49 (2C), $130.17,131.82$ (2C), 136.26, 137.53, 138.08, 140.08, 147.27, 159.22, 186.14;

IR (KBr)/cm ${ }^{-1}$ 2936, 2862, 1782, 1234; HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right) 413.1501$; Found 413.1505.

5-(3-methoxyphenyl)-1-(4-methoxyphenyl)-2-(4-nitrophenyl)-1 H -pyrrole-3-carbaldehyde

 (4cc):

Yellow liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.65$ (s, 3H), 3.77 $(\mathrm{s}, 3 \mathrm{H}), 6.64-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.75(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.09,55.43,108.50,113.70,114.08,114.42$ (2C), 121.28, 123.21 (2C), 124.63, 129.27, 129.44, 129.50 (2C), 131.86 (2C), 132.40, 136.24, 137.80, 140.29, 147.40, 159.26, 159.39, 186.00; IR (KBr)/ $\mathrm{cm}^{-1} 2962,2823,1666,1519,1342,1234$; HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right)$429.1450; Found 429.1454.

1, 5-bis (4-methoxyphenyl)-2-(4-nitrophenyl)-1H-pyrrole-3-carbaldehyde (4dc):

Yellow solid (M.P $\left.=145-146{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 3.77 (s, 6H), $6.75(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 8.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H})$, $6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.01$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ (d, $J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 9.74(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.36,55.37,107.60,113.69(2 \mathrm{C}), 114.34(2 \mathrm{C}), 123.18(2 \mathrm{C}), 124.54,126.78$, 129.38 , 129.52 (2C), 130.12 (2C), 131.82 (2C), 136.29, 137.91, 139.88, 147.25, 159.06, 159.21, 186.10; IR (KBr)/cm ${ }^{-1}$ 2924, 2854, 1776, 1250, 1165, 1034; HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$ $\left(\mathrm{MH}^{+}\right)$429.1450; Found 429.1452.

5-(4-fluorophenyl)-1-(4-methoxyphenyl)-2-(4-nitrophenyl)-1H-pyrrole-3-carbaldehyde (4ec):

Yellowish oily liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.78$ (s, 3 H), $6.75(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.90(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.14(\mathrm{~m}, 4 \mathrm{H})$,
$7.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.75(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $54.40,107.34,113.47$ (2C), 114.29, 114.46, 122.25 (2C), 128.09, 128.48 (2C), 128.60, 129.44 , $129.51,129.58,129.63,130.51,131.82$ (2C), 135.11, 135.60, 135.94, 158.37, 185.00; IR $(\mathrm{KBr}) / \mathrm{cm}^{-1} 2962,2885,1782$, 1342, 1172; HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right)$ 417.1250; Found 417.1257.

Typical procedure for the synthesis of (4-fluorophenyl)-1-(4-methoxyphenyl)-2-(4-nitrophenyl)-4-phenyl-1 \boldsymbol{H}-pyrrole-3-carbaldehyde (5):

N - Bromosuccinimide (NBS) ($22 \mathrm{mg}, 0.125 \mathrm{mmol}$) was added to the stirred solution of pyrrole 4ec ($50 \mathrm{mg}, 0.125 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL})$ at rt and further heated at $80^{\circ} \mathrm{C}$ for 4 hrs . The reaction was cooled to room temperature and solvent was evaporated under reduced pressure. The crude material was taken in saturated NaHCO_{3} solution and extracted with ethyl acetate (2 x 5 mL), the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. Corresponding intermediate bromo compound ($80 \mathrm{mg}, 68 \%$, was obtained as reddish oily liquid after simple chromatographic purification using EtOAc/hexane. To the stirred solution of crude bromo compound ($78 \mathrm{mg}, 0.15 \mathrm{mmol}$) in DMF (3.0 mL) were added $\mathrm{PhB}(\mathrm{OH})_{2}(1.5$ equiv, $28 \mathrm{mg}, 0.23 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%, 18 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 M solution, $78 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) under inert atmosphere. The reaction was then heated to $110{ }^{\circ} \mathrm{C}$ for 4 hrs . After complete consumption of the intermediate bromo compound on TLC, reaction was cooled and filtered through celite. After standard work up and chromatographic purification using (Hexane : EtOAc $=20: 1)$ gave compound $5(55 \mathrm{mg}, 72 \%$,) as a yellow oily liquid.

(4-fluorophenyl)-1-(4-methoxyphenyl)-2-(4-nitrophenyl)-4-phenyl-1H-pyrrole-3-

 carbaldehyde (5):

Yellowish pasty liquid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.74$ (s, 3 H), $6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{t}, J=8.7,3 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2H), $6.90(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 5.4 \mathrm{~Hz} 2 \mathrm{H}), 7.04(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=8.9 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.13(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) 9.85(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.33,114.15(2 \mathrm{C})$, $115.18,115.69,122.97$ (2C), 125.74, 127.08, 127.19, 127.26, 128.07 (2C), 129.01, 129.65 (2C), 130.86 (2C), 132.06 (2C), 132.60, 132.82, 132.89, 133.58, 136.98, 137.29, 147.22, 159.15, 162.95, 186.91; IR (KBr)/ cm^{-1} 2923, 1728, 1512, 1350, 1226; HRMS (ESI): Calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right) 493.1563$; Found 493.1567.

$\int \mid$ 隹
10.0

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)										

TRI SUBSTIEUTED PYRROLE SPECTRA
5,PH,2F-PYRQiE

${ }_{\mathrm{T}}^{\mathrm{N}}$

1

TRI SUBSTकाUTED PYRROLE SPE®TRTRA 5,PH-3F-PY

$\stackrel{\text { - }}{\stackrel{+}{m}}$

 5-Phengy-3-Chloro-Pyrolle 13C NMTR
5Pheny皆3-ChloroPyrolle

 5Ph,4GF3 Pyrole

5-Phenyle-Benzole-Pyrolle 13C NMR NEW 5-pheraj̀l,benzyl-pyrole
$\stackrel{\oplus}{\stackrel{N}{\mid n}}$

$\stackrel{8}{8}$

$\begin{aligned} & \underset{\sim}{1} \\ & \hline \end{aligned}$	$\begin{gathered} \underset{\sim}{\sim} \\ \underset{\sim}{2} \end{gathered}$	$\begin{array}{\|l} \text { H. } \\ \text { un } \\ \text { un } \end{array}$		T
	1	1	1	1
7.2	7.1	7.0	6.9	6.8

8

3-methoxy-4-no2-pyrolle 3-Methoxy-4-FiO2-Pyrole

Nisafect13_23 Aug 3-Methoxy-4-NO2-Pyrole

$\stackrel{8}{8}$

$\stackrel{8}{1}$


```
Tp-0001 \vec{ W}
```


Crystal structure of 1-(4-methoxyphenyl)-2-(naphthalen-2-yl)-5-phenyl-1H-pyrrole-

3-carbaldehyde (4aq):

[CCDC - 1007133]
The title compound, 1-(4-methoxyphenyl)-2-(naphthalen-2-yl)-5-phenyl-1H-pyrrole-3-carbaldehyde, crystallizes in the monoclinic space group $\mathrm{P}_{1} / \mathrm{c}$ with the following unit-cell parameters: $\mathrm{a}=12.6491(8), \mathrm{b}=$ $7.9932(4), c=21.9541(13) \AA, \beta=105.450(7), Z=4$. The crystal structure was solved by direct methods using single-crystal X -ray diffraction data and refined by full-matrix least-squares procedures to a final R-value of 0.0489 for 2249 observed reflections.

X-ray intensity data of 7999 reflections (of which 4184 unique) were collected at room temperature on a CCD area-detector diffractometer (X'calibur system - Oxford diffraction make, U.K.) equipped with graphite monochromated MoK α radiation ($\lambda=0.71073 \AA$) . The crystal used for data collection was of dimensions $0.30 \times 0.20 \times 0.20 \mathrm{~mm}$. The intensities were measured by ω scan mode for θ ranges 3.77 to 26.0°. 2249 reflections were treated as observed ($1>2 \sigma(1)$). Data were corrected for Lorentz and polarisation factors. The structure was solved by direct methods using SHELXS97. ${ }^{(1)}$ All non-hydrogen atoms of the molecule were located in the best E-map. Full-matrix least-squares refinement was carried out using SHELXL97 [1 All the hydrogen atoms were geometrically fixed and allowed to ride on the corresponding non-hydrogen atoms with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$, and $\mathrm{U}_{\text {iso }}=1.5 \mathrm{U}_{\text {eq }}$ of the attached C atom for methyl H atoms and $1.2 \mathrm{U}_{\text {eq }}$ for other H atoms. The final refinement cycles converged to an $\mathrm{R}=0.0489$ and $w R\left(F^{2}\right)=0.1114$ for the observed data. Residual electron densities ranged from -0.172 to 0.158 $e \AA^{-3}$. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4). The crystallographic data are summarized in Table 1. CCDC - 1007133 contains the supplementary crystallographic data for this paper.

Results and discussion

An ORTEP view of the title compound with atomic labeling is shown in Fig.1. ${ }^{(2)}$ The geometry of the molecule was calculated using the W inGX ${ }^{(3)}$ and PARST ${ }^{(4)}$ software's.

References

1. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
2. L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854.
3. A. L. Spek, Acta Cryst., 2009, D65, 148-155.
4. M. Naedelli, J Appl. Cryst., 1995, 28, 659.

Table 1 Crystal and experimental data

CCDC No	1007133
Crystal description	White block shaped
Crystal size	$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{1} \mathrm{O}_{2}$
Formula weight	403.46
Radiation, Wavelength	$\mathrm{Mo} \mathrm{Ka}, \mathrm{0.71073} \AA$
Unit cell dimensions	$\beta=12.6491(8), \mathrm{b}=7.9932(4), \mathrm{c}=21.9541(13) \AA$,
Crystal system	monoclinic
Space group	$2139.5(2) \AA^{3}$
Unit cell volume	

Density (calculated)	$1.253 \mathrm{Mgm}^{-3}$
No. of molecules per unit cell, Z	4
Temperature	273(2) K
Absorption coefficient (μ)	$0.078 \mathrm{~mm}^{-1}$
F (000)	848
Scan mode	omega scan
θ range for entire data collection	$3.77<\theta<26.00^{\circ}$
Reflections collected / unique	7999/4184
Reflections observed ($1>2 \sigma(\mathrm{l})$)	2249
Structure determination	Direct methods
Refinement	Full-matrix least-squares on F^{2}
No. of parameters refined	280
Final R	0.0489
$w R\left(F^{2}\right)$	0.1114
Weight	$1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0277 P)^{2}+0.00 P\right]$
	where $\mathrm{P}=\left[\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right] / 3$
Goodness-of-fit	0.918
$(\Delta / \sigma)_{\text {max }}$ in the final cycle	0.008
Final residual electron density	$-0.172<\Delta \rho<0.158$ e \AA^{-3}

$-0.172<\Delta \rho<0.158 e^{-3}$

Software for structure solution: SHELXS97 (Sheldrick, 1997)

Software for refinement:

Software for molecular plotting: ORTEP-3 (Farrugia, 1997) PLATON (Spek, 2003)

Software for geometrical calculation PLATON (Spek, 2003) PARST (Nardelli, 1995)

Figure 1 ORTEP view of the molecule with displacement ellipsoids drawn at $40 \% . \mathrm{H}$ atoms are shown as small spheres of arbitrary radii.

CCDC- 1007133 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

