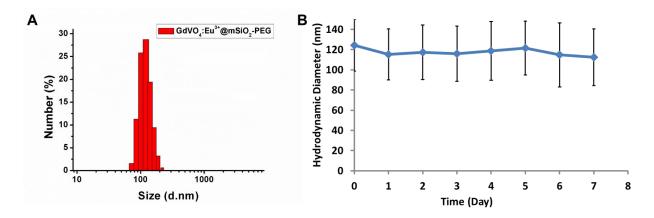
Supplementary Information

Mesoporous silica-coated luminescent Eu³⁺ doped GdVO₄ nanoparticles for multimodal imaging and drug delivery


Taeho Kim, a,b Nohyun Lee, Yong Il Park, a,b Jangwon Kim, Jaeyun Kim, Eun Yeol Lee,e Minyoung Yi,e Bong-Geun Kim, Taeghwan Hyeon, A,b Taekyung Yu, e Hyon Bin Na*f

^aCenter for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Korea ^bSchool of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea

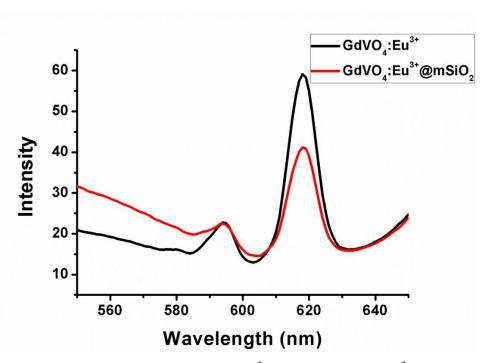
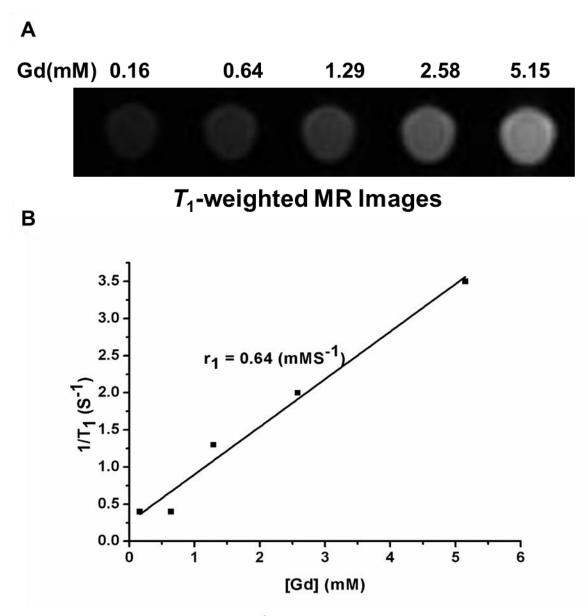
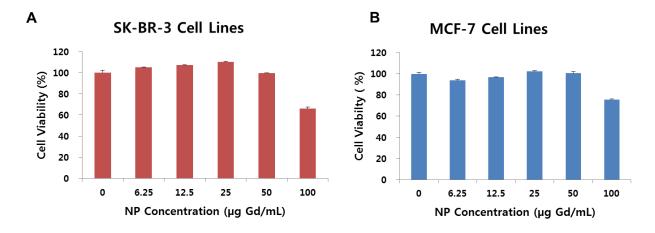
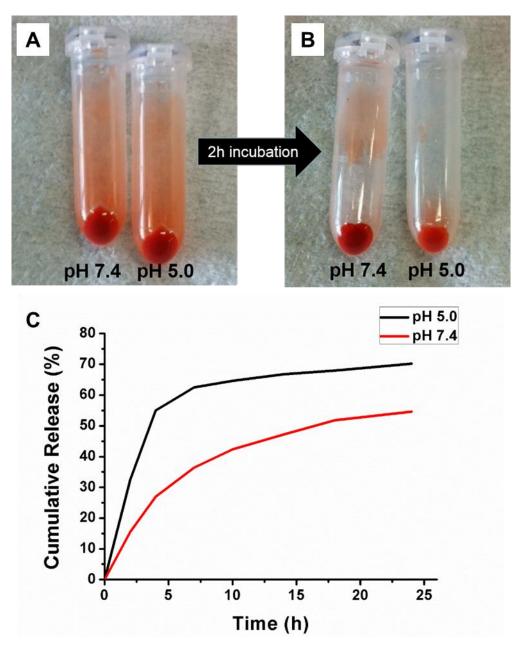
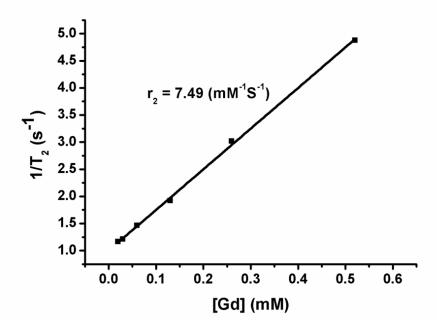

^cSchool of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Korea ^dSchool of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea ^eDepartment of Chemical Engineering, Kyung Hee University, Yongin, 446-701, Korea ^fDepartment of Chemical Engineering, Myongji University, Yongin, 449-728, Korea

Table S1. ICP result of GdVO₄:Eu³⁺ NPs synthesized using various ratios of Gd/Eu


Insert ratio of Gd/Eu	mol fraction of GdVO ₄ :Eu ³⁺ NPs (mol%)	
	Eu	Gd
1/99	1.58	98.82
5/95	5.73	94.27
9/91	10.04	89.96
11/89	12.07	87.93
15/85	16.35	83.66


Fig. S1 Hydrodynamic diameters of GdVO₄:Eu³⁺@mSiO₂-PEG NPs in PBS as measured by dynamic light scattering (DLS). (a) The average hydrodynamic diameters was 124 nm on day 0 and (b) maintained at 110-125 nm for over 7 days.


Fig. S2 Room temperature PL spectra of GdVO₄:Eu³⁺ NPs and GdVO₄:Eu³⁺@mSiO₂ NPs (at the same concentration of Eu³⁺; 0.01 mg Eu/mL) under UV irradiation, showing 70% of PL efficiency of GdVO₄:Eu³⁺ NPs was maintained after mesoporous silica coatings.


Fig. S3 MR property of the GdVO₄:Eu³⁺@dSiO₂ NPs. (A) T_1 -weighted MR images of the GdVO₄:Eu³⁺@dSiO₂-PEG NP dispersion in water. The contents of Gd in the dispersions are indicated above the images. (B) Linear plot of Gd concentration versus $1/T_1$ with a relaxivity value (r₁) of 0.64 mM⁻¹ s⁻¹.

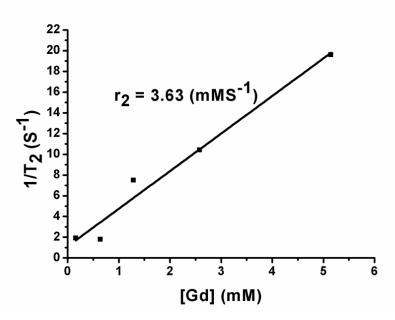

Fig. S4 Assessment of the viability of SK-BR-3 cells (A) and MCF-7 cells (B) by MTT assay after a 24h incubation with GdVO₄:Eu³⁺@mSiO₂-PEG NPs of various concentrations (0, 6.25, 12.5, 25, 50, and 100 μ g Gd/mL).

Fig. S5 DOX release profile. Photographs of DOX loaded NPs (A) after DOX loading step, and (B) after 2h incubation. (C) Cumulative release of DOX for 24h at different pHs (black: pH 5.0, red: pH 7.4).

Fig. S6 MR property of the GdVO₄:Eu³⁺@mSiO₂ NPs. Linear plots of Gd concentration versus $1/T_2$ with a relaxivity value (r₂) of 7.49 mM⁻¹S⁻¹.

Fig. S7 MR property of the $GdVO_4$: $Eu^{3+}@dSiO_2$ NPs. Linear plots of Gd concentration versus $1/T_2$ with a relaxivity value (r₂) of 3.63 mM⁻¹S⁻¹.

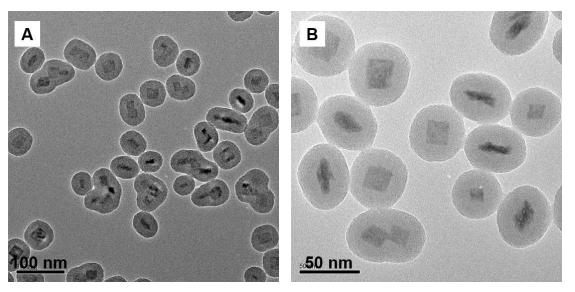


Fig. S8 TEM and HRTEM images of dense silica coated $GdVO_4$: Eu^{3+} NPs ($GdVO_4$: Eu^{3+} @ $dSiO_2$ NPs).