Enhanced Reducibility and Redox Stability of Fe₂O₃ in the Presence of CeO₂ Nanoparticles

Zhenhua Gu,^{a, b} Kongzhai Li,^{b, c}*Shan Qing,^{b, c} Xing Zhu,^{b, c} Yonggang Wei,^{b, c}

Yongtao Li,^d Hua Wang^{b, c}

^a Oxbridge College, Kunming University of Science and Technology;

^b State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,

Kunming University of Science and Technology, Kunming 650093, Yunnan, China;

^c Faculty of Metallurgical and Energy Engineering, Kunming University of Science

and Technology, Kunming 650093, China;

^d School of Materials Science and Engineering, Anhui University of Technology,

Maanshan, 243002, China

*Corresponding author: E-mail address: kongzhai.li@aliyun.com, phone/FAX: 86 871 5153405 **Supporting Figure S1.** Effect of TPR/OSC redox treatment on the XRD pattern of CeFeO₃ sample.

Supporting Figure S2. XPS spectra of Ce 3d for CeO₂ and CeFeO₃ samples. Both the CeO₂ and CeFeO₃ samples were prepared at 800 °C.

