Host-guest complexation between 1,4-dipropoxypillar[5]arene and imidazolium-based ionic liquids †

Lingyan Gao,^a Yong Yao,^a Shengyi Dong,^{*a} and Jiayin Yuan^{*b}

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China Fax: +86-571-8795-1895; Tel: +86-571-8795-3189; Email address: dongsyzju@zju.edu.cn. ^bMax Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany, Jiayin.Yuan@mpikg.mpg.de

Electronic Supplementary Information (16 pages)

1	Materials and methods	S2
2	Synthesis of AB_2 monomer 3	S2
3	2D NOESY spectrum of an equimolar mixture of DPP5 and 2a	
		S4
4.	Stoichiometry and association constant determination for the complexation	S5
	between DPP5 and 2a–g	
5	Mass spectrum of host-guest complexes	S13
6	X-ray crystal data of 3	S15
	References	S16

1. Materials and methods

All reagents were commercially available and used as supplied without further purification. 1,4-Dipropoxybenzene^{S1a} **DPP5**^{S1b} and 1,4-bis(2-bromoethoxy)benzene^{S1c} were synthesized according to literature procedures. ¹H NMR spectra were collected on a temperature-controlled Bruker AVANCE DMX-400 spectrometer. ¹³C NMR spectra were recorded on a Bruker AVANCE DMX-400 spectrometer at 100 MHz. Low-resolution electrospray ionization (LRESI) mass spectra were obtained on a Bruker Esquire 3000 plus mass spectrometer (Bruker-Franzen Analytik GmbH Bremen, Germany) equipped with an ESI interface and an ion trap analyzer.

2. Synthesis s of AB_2 monomer 3

A mixture of 1,4-bis(2-bromoethoxy)benzene (1.60 g, 5.00 mmol), 1,4diethoxybenzene (8.30 g, 50.0 mmol), boron trifluoride etherate (12 mL), paraformaldehyde (5.70 g, 150 mmol) and ClCH₂CH₂Cl (500 mL) was stirred at room temperature for half an hour. Then a saturated aqueous solution of NaHCO₃ was dropped to the mixture. After filteration, the organic layer was separated, washed with water and brine, and dried over Na₂SO₄. The solvent was removed to get a white solid, which was used for the next step without further purification. This white solid and 1methyl-1H-imidazole (8.20 g, 100 mmol) was stirred under reflux in toluene overnight. The solution was evaporated under vacuo and the residue was dissolved in water. A saturated aqueous solution of NH₄PF₆ was added to afford a white solid, which was purified by chromatography on silica gel (CH₃COOC₂H₅/CH₃CN, ν/ν 4:1 \rightarrow 2:1) to obtain **3**. (1.10 g, 25%). Melting point: 137.5–140.1 °C. ¹H NMR (400 MHz, CD₃CN, 295 K) δ (ppm): 7.25 (2H, s), 6.98 (4H, J = 4.0 Hz, d), 6.87 (2H, s),

6.76 (4H, J = 4.0 Hz, d), 6.58 (2H, s), 6.24 (2H, s), 4.38 (4H, J = 4.0 Hz, t), 4.29 (4H, J = 4.0 Hz, t), 3.97–3.88 (12H, m), 3.82–3.76 (8H, m), 3.67 (2H, s), 3.65 (4H, s), 2.86 (6H, s), 1.42–1.37 (24H, m). ¹³C NMR (100 MHz, CD₃CN, 295 K) δ (ppm): 149.70, 149.41, 149.24, 149.03, 148.41, 135.34, 129.17, 128.26, 128.10, 127.94, 127.79, 123.16, 121.68, 114.73, 114.45, 114.23, 113.57, 113.37, 65.09, 64.07, 63.79, 63.61, 63.35, 49.48, 34.49, 29.11, 28.81, 28.59, 14.35, 14.27. LRESIMS: m/z 1197.6 [M - $PF_6]^+$ (36%), *m/z* 1051.8 [M - 2HPF₆ -H]⁺ (100%). HRESIMS: *m/z* calcd for [M - PF_6]⁺ $C_{63}H_{80}F_6N_4O_{10}P^+$, 1197.5516; found 1197.5504; error -1.2 ppm.

Fig. S1 ¹H NMR spectrum (400 MHz, CD₃CN, 22 $^{\circ}$ C) of **3**.

Fig. S2 ¹³C NMR spectrum (100 MHz, CD₃CN, 22 $^{\circ}$ C) of 3.

Fig. S3 LRESI mass spectrum of 3.

3. 2D NOESY spectrum of an equimolar mixture of **DPP5** and **2a**

Fig. S4 Partial 2D NOESY spectrum of an equimolar mixture of **DPP5** and **2a** (400 MHz, CDCl₃, 22 °C).

4. Stoichiometry and association constants determination for the complexation between **DPP5** and 2a-g

Fig. S5 Partial ¹H NMR spectra (400 MHz, CDCl₃, 22 °C) of **DPP5** at a constant concentration of 2.00 mM upon addition of **G** (**2a**, 15 mM): (a) 0.00 μ L, (b) 10.0 μ L to a, (c) 10.0 μ L to b, (d) 10.0 μ L to c, (e) 10.0 μ L to d, (f) 25.0 μ L to e, (g) 25.0 μ L to f, (h) 25.0 μ L to g, (i) 50.0 μ L to h, (j) 50.0 μ L to i, (k) 100 μ L to j, (l) 100 μ L to k.

To determine the stoichiometry and association constant between **DPP5** and **2a** (**G**), NMR titrations were done with solutions which had a constant concentration of **DPP5** (2 mM) and varying concentrations of **G**. By a non-linear curve-fitting method, the association constant (K_a) of **DPP5** \supset **2a** was estimated to be about 9.50 (± 0.16) × 10 M⁻¹. By a mole ratio plot, a 1:1 stoichiometry was obtained.

The non-linear curve-fitting was based on the equation:^{S2} $\Delta \delta = (\Delta \delta_{\infty} / [H]_0) (0.5[G]_0 + 0.5([H]_0 + 1/K_a) - (0.5 ([G]_0^2 + (2[G]_0 (1/K_a - [H]_0)) + (1/K_a + [H]_0)^2)^{0.5})) (Eq. S1)$

Where $\Delta\delta$ is the chemical shift change of H_{ε} on **DPP5** at [G]₀, $\Delta\delta_{\infty}$ is the chemical shift change of H_{ε} when the host is completely complexed, [H]₀ is the fixed initial concentration of the host, and [G]₀ is the initial concentration of **G**.

Fig. S6 The chemical shift changes of H_{ϵ} on DPP5 upon addition of 2a.

Fig. S7 Mole ratio plot for the complexation between DPP5 and 2a, indicating a 1:1 stoichiometry.

Fig. S8 Partial ¹H NMR spectra (400 MHz, CDCl₃, 22 °C) of **DPP5** at a constant concentration of 2.00 mM upon addition of **G** (**2b**, 15 mM): (a) 0.00 μ L, (b) 10.0 μ L to a, (c) 10.0 μ L to b, (d) 10.0 μ L to c, (e) 10.0 μ L to d, (f) 25.0 μ L to e, (g) 25.0 μ L to f, (h) 25.0 μ L to g, (i) 50.0 μ L to h, (j) 50.0 μ L to i, (k) 100 μ L to j, (l) 100 μ L to k.

Fig. S9 The chemical shift changes of H_{ϵ} on **DPP5** upon addition of **2b**.

Fig. S10 Partial ¹H NMR spectra (400 MHz, CDCl₃, 22 °C) of **DPP5** at a constant concentration of 2.00 mM upon addition of **G** (2c, 15 mM): (a) 0.00 μ L, (b) 10.0 μ L to a, (c) 10.0 μ L to b, (d) 10.0 μ L to c, (e) 10.0 μ L to d, (f) 25.0 μ L to e, (g) 25.0 μ L to f, (h) 25.0 μ L to g, (i) 50.0 μ L to h, (j) 50.0 μ L to i, (k) 100 μ L to j, (l) 100 μ L to k.

Fig. S11 The chemical shift changes of H_{ϵ} on DPP5 upon addition of 2c.

Fig. S12 Partial ¹H NMR spectra (400 MHz, CDCl₃, 22 °C) of **DPP5** at a constant concentration of 2.00 mM upon addition of **G** (2d, 15 mM): (a) 0.00 μ L, (b) 10.0 μ L to a, (c) 10.0 μ L to b, (d) 10.0 μ L to c, (e) 10.0 μ L to d, (f) 25.0 μ L to e, (g) 25.0 μ L to f, (h) 25.0 μ L to g, (i) 50.0 μ L to h, (j) 50.0 μ L to i, (k) 100 μ L to j, (l) 100 μ L to k.

Fig. S13 The chemical shift changes of H_{ϵ} on DPP5 upon addition of 2d.

Fig. S14 Partial ¹H NMR spectra (400 MHz, CDCl₃, 22 °C) of **DPP5** at a constant concentration of 2.00 mM upon addition of **G** (2e, 15 mM): (a) 0.00 μ L, (b) 10.0 μ L to a, (c) 10.0 μ L to b, (d) 10.0 μ L to c, (e) 10.0 μ L to d, (f) 25.0 μ L to e, (g) 25.0 μ L to f, (h) 25.0 μ L to g, (i) 50.0 μ L to h, (j) 50.0 μ L to i, (k) 100 μ L to j, (l) 100 μ L to k.

Fig. S15 The chemical shift changes of H_{ϵ} on DPP5 upon addition of 2e.

Fig. S16 Partial ¹H NMR spectra (400 MHz, CDCl₃, 22 °C) of **DPP5** at a constant concentration of 2.00 mM upon addition of **G** (2f, 15 mM): (a) 0.00 μ L, (b) 20.0 μ L to a, (c) 10.0 μ L to b, (d) 10.0 μ L to c, (e) 25.0 μ L to d, (f) 50.0 μ L to e, (g) 50.0 μ L to f, (h) 50.0 μ L to g, (i) 100.0 μ L to h, (j) 100.0 μ L to i.

Fig. S17 The chemical shift changes of H_{ϵ} on **DPP5** upon addition of 2f.

Fig. S18 Partial ¹H NMR spectra (400 MHz, CDCl₃, 22 °C) of **DPP5** at a constant concentration of 2.00 mM upon addition of **G** (**2g**, 15 mM): (a) 0.00 μ L, (b) 10.0 μ L to a, (c) 10.0 μ L to b, (d) 10.0 μ L to c, (e) 10.0 μ L to d, (f) 25.0 μ L to e, (g) 25.0 μ L to f, (h) 25.0 μ L to g, (i) 50.0 μ L to h, (j) 50.0 μ L to i, (k) 200 μ L to j.

Fig. S19 The chemical shift changes of H_{ϵ} on DPP5 upon addition of 2g.

Fig. S20 Mass spectrum of the host-guest complex prepared from DPP5 and 2a.

Fig. S21 Mass spectrum of the host-guest complex prepared from DPP5 and 2b.

Fig. S23 Mass spectrum of the host-guest complex prepared from DPP5 and 2d.

Fig. S25 Mass spectrum of the host-guest complex prepared from DPP5 and 2f.

6. X-ray crystal data of 3

Crystal data of 3: colorless, $C_{63}H_{80}F_{12}N_4O_{10}P_2$, *FW* 1342.25, Triclinic, space group P -1, a = 12.7806(6), b = 14.6895(6), c = 20.5104(10) Å, $\alpha = 110.228(4)^\circ$, $\beta = 102.002(4)^\circ$, $\gamma = 97.058(4)^\circ$, V = 3453.7(3) Å³, Z = 2, $D_c = 1.292$ g cm⁻³, T = 120(2) K, $\mu = 1.343$ mm⁻¹, 21537 measured reflections, 12021 independent reflections, 831 parameters, 0 restraints, F(000) = 1408, $R_1 = 0.1166$, $wR_2 = 0.3021$ (all data), $R_1 = 0.0938$, $wR_2 = 0.2742$ [$I > 2\sigma(I)$], max. residual density 0.932 e•Å⁻³, and goodness-of-fit (F^2) = 1.130. CCDC-914822. References:

- S1. (a) R. Castro, K. R. Nixon, J. D. Evanseck and A. E. Kaifer, J. Org. Chem., 1996, 61, 7298–7303; (b) G. Yu, C. You, Z Zhang, J. Chen, X. Yan, B. Zheng, S. Liu and F. Huang, J. Am. Chem. Soc., 2012, 134, 8711–8717; (c) Y. Yao, M. Xue, X. Chi, Y. Ma, J. He, Z. Abliz and F. Huang, Chem. Commun., 2012, 48, 6505–6507.
- S2. K. A. Connors, *Binding Constants*; Wiley: New York, 1987; P. S. Corbin, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 1999; P. R. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi and D. J. Williams, *J. Am. Chem. Soc.*, 1996, **118**, 4931–4951.