Supplementary information for:

Glass-like thermal conductivity in SrTiO₃ thermoelectrics induced by A-site vacancies

S. R. Popuri,^a A. J. M. Scott,^a R. A. Downie,^a M. A. Hall,^a E. Suard,^b R. Decourt,^c M. Pollet,^c

and J.-W. G. Bos^{a_*}

^a Institute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery,

School of engineering and physical sciences, Heriot-Watt University, Edinburgh, EH14 4AS,

United Kingdom. <u>*j.w.g.bos@hw.ac.uk</u>

^b Institut Laue-Langevin, Grenoble, F-38000, France

^c CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608,

France

Table S1. Lattice parameters from Rietveld fits against laboratory X-ray data and pellet

densities for the Sr_1-xLa_{0.67x} _{0.33x}TiO_3, Sr_1-xLa_{0.67x} _{0.33x}Ti_{0.80}Nb_{0.20}O_{3-\delta} and Sr_{0.8}La_{0.13}\square_{0.07}Ti_1-2000

 $_{y}Nb_{y}O_{3-\delta}$ series.

X	у	a (Å)	Density (%)
0	0	3.9052(1)	95(1)
0.4	0	3.8966(1)	97(1)
0.8	0	3.8843(1)	92(1)
0	0.2	3.9267(1)	92(1)
0.4	0.2	3.9056(1)	90(1)
0.8	0.2	3.8935(1)	91(1)
0.2	0	3.9082(1)	90(1)
0.2	0.05	3.9135(1)	91(1)
0.2	0.10	3.9163(1)	95(1)
0.2	0.2	3.9341(1)	93(1)

Space group Pm-3m, Sr/La/ (0, 0, 0), Ti/Nb (1/2, 1/2, 1/2), O (1/2, 1/2, 0).

(3)/(3) 0.006(1)
[/] 0.005(1)
5) 0.012(1)
2) 0.006(1)
0()5 05 5(: 7(<u>)</u>

Table S2. Structural parameters for $Sr_{0.8}La_{0.13}Ti_{0.95}Nb_{0.05}O_{2.91(3)}$ from a Rietveld fit againstsuper-D2B neutron powder diffraction data.

Space Group I4/mcm; a = 5.5327(1) Å; c = 7.8324(4) Å.

Table S3. Selected bond distances (Å) and angles (°) for $Sr_{0.8}La_{0.13}Ti_{0.95}Nb_{0.05}O_{2.91(3)}$.

	Distance /
	Angle
Ti/Nb-O1 (×2)	1.95809(9)
Ti/Nb-O2 (×4)	1.95831(9)
Ti/Nb-O1-Ti/Nb	180
Ti/Nb-O2-Ti/Nb	174.57(9)
Sr/La-O1 (×4)	2.76635(7)
Sr/La-O2 (×4)	2.7030(10)
Sr/La-O2 (×4)	2.8341(11)

Fig. S1. Room temperature powder X-ray diffraction patterns for the (a) $Sr_{1-x}La_{0.67x} = 0.33xO_3$, (b) $Sr_{1-x}La_{0.67x} = 0.33xTi_{0.8}Nb_{0.2}O_{3-\delta}$ and (c) $Sr_{0.80}La_{0.13} = 0.07Ti_{1-y}Nb_yO_{3-\delta}$ series.

Fig. S2. Temperature dependence of the thermal diffusivity (α) and specific heat (C_p) for the Sr_{1-x}La_{0.67x 0.33}TiO₃ series.

Fig. S3. Temperature dependence of the Seebeck coefficient (S) and electrical resistivity (ρ) for the Sr_{1-x}La_{0.67x} _{0.33}Ti_{0.8}Nb_{0.2}O₃ series.

Fig. S4. Observed (circles), calculated (solid line) and difference Rietveld neutron diffraction profiles for $Sr_{0.80}La_{0.13}$ $_{0.07}Ti_{0.95}Nb_{0.05}O_{2.91(3)}$. The bottom row of Bragg markers is for a 1.0(2) wt% TiO₂ impurity. Fit statistics: $\chi^2 = 4.1$, wR_p = 4.0%, R_p = 3.2%, R_F² = 2.2%.

