Electronic Supplementary Information

$Fe_3O_4/Carbon$ composites obtained by electrospinning as an anode material with high rate capability for lithium ion batteries

Shaozhen Gu, Yuping Liu, Guanhua Zhang, Wei Shi, Yutang Liu*, Jian Zhu*

Figure. S1 Nitrogen adsorption and desorption isotherms and the corresponding BJH distributions (inset) of (a)the pure Fe_2O_3 with the average pore diameter of 6.1 nm and (b) Fe_3O_4/C composites with the average pore diameter of 4.3 nm.

Figure. S2 XRD pattern of the sample after the TGA test at 1000 °C with the heating rate of 3.5 °C min⁻¹.

Figure. S3 Raman spectrum of the Fe₃O₄/C composites.

Figure. S4 Cyclic Voltammetry (CV) of the pure Fe_2O_3 at a scan rate of 0.5 mV s⁻¹ over a voltage range of 0.01– 3.00 V versus Li/Li⁺.

Figure. S5 The XRD pattern of Fe_3O_4/C electrode before cycle and after discharging to 0.8V. Rotundity and quadrate are the symbols of Fe_3O_4 and $Li_2Fe_3O_4$ phase, respectively.

Figure. S6 Electrochemical impedance spectroscopy (EIS) of the pure Fe_2O_3 and Fe_3O_4/C composite.