Electronic Supplementary Information

A simple one pot synthesis of cubic Cu₅FeS₄

Prashant Kumar^a, Meenakshi Gusain^a, Pandian Senthil Kumar^b, Sitharaman Uma^a and

Rajamani Nagarajan^{a*}

^aMaterials Chemistry Group, Department of Chemistry, University of Delhi,

Delhi 110007, India

^bDepartment of Physics and Astrophysics, University of Delhi, Delhi 110007, India

*E-mail: <u>rnagarajan@chemistry.du.ac.in</u>

Fig. S1 PXRD pattern of product obtained from refluxing (a) 0.50 g (5 *mmol*) of CuCl with 0.76 g (10 *mmol*) thiourea, (b) FeCl₃ with thiourea and (c) CuCl, FeCl₃ and thiourea. JCPDS Files of Cu_{1.8}S, Fe₃S₄ and cubic Cu₅FeS₄ are provided for easy comparison.

Fig. S2 EDX spectrum along with the analysis of synthesized cubic Cu₅FeS₄.

Fig.S3 Room temperature Raman spectrum of Cu_9S_5 ($Cu_{1.8}S$) obtained by refluxing CuCl and thiourea in ethylene glycol.

Fig. S4 PXRD pattern of the product from the reaction of (a) 0.50 g (5 *mmol*) CuCl, 1.01 g (0.25 *mmol*) of $Fe_2(SO_4)_3$ and 0.76 g (10 *mmol*) thiourea (b) 0.50 g (5 *mmol*) CuCl, 2.02 g (0.5 *mmol*) of $Fe(NO_3)_3$ ·9H₂O and 0.76 g (10 *mmol*) thiourea in 100 mL of ethylene glycol for 1.5 h. JCPDS files of Fe_3S_4 , hexagonal CuS, Cu₉S₅ (Cu_{1.8}S) and cubic Cu₅FeS₄.

Fig. S5 Comparison of the PXRD pattern of Cu₅FeS₄ with the known iron sulphide compositions in higher symmetry.