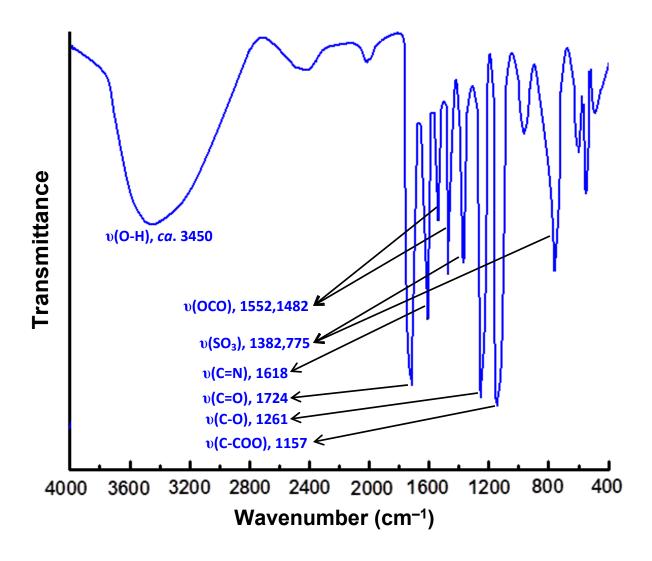
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

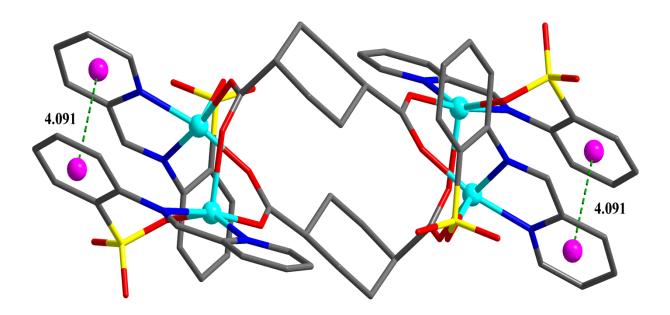
Electronic Supplementary Information

for

A Cyclic Tetranuclear Cuboid Type Copper(II) Complex Doubly Supported by Cyclohexane-1,4-Dicarboxylate: Molecular and Supramolecular Structure and Cyclohexane Oxidation Activity


Susanta Hazra, Sanghamitra Mukherjee, M. Fátima C. Guedes da Silva and Armando J. L. Pombeiro*

Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. E-mail:pombeiro@tecnico.ulisboa.pt


Synthesis and Characterization of $[Cu_2L_2Cl_2]$

The dichlorobridged dicopper(II) was synthesized in a procedure which is slightly different to the reported one¹. To a hot and stirring water solution (10 mL) of 2-aminobenzenesulfonic acid (0.173 g, 1.00 mmol) was added a methanol solution (5 mL) of pyridine-2-carboxyaldehyde (0.107 g, 1.00 mmol) dropwise and the solution was stirred for 4 h. To the resulting orange solution was added dropwise a methanol solution (5 mL) of CuCl₂.2H₂O (0.170 g, 1.00 mmol) to produce a dark green solution. After stirring for one more hour, the solution was filtered and kept for slow evaporation. After 2 days, a green crystalline compound containing diffractable crystals that deposited was collected by filtration and washed with methanol. Yield: 0.306 g (85%). C₂₄H₁₈N₄O₆S₂Cl₂Cu₂ (721): Calcd. C, 40.01; H, 2.52; N, 7.78. Found: C, 40.35; H, 2.49; N, 7.71.

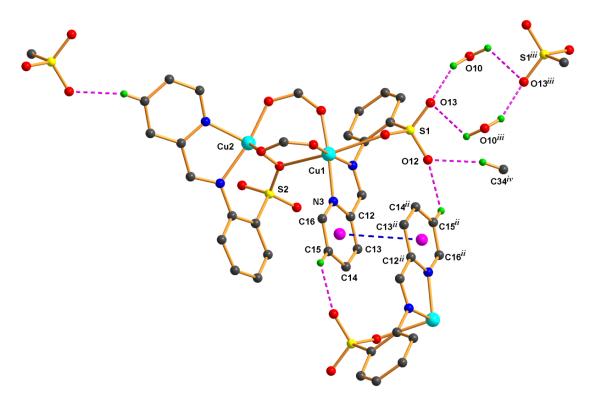

Crystallographic Data: Crystal system = monoclinic; Space group = $P2_1/c$; a = 6.757(3); b = 15.226(7); c = 12.246(4); $\alpha = \gamma = 90.00$; $\beta = 95.75(2)$; V = 1253.5(9); Z = 2.

Fig. S1. FT-IR spectrum of $[(CuL)_2(\mu_4\text{-O,O',O'',O'''}\text{-CDC})]_2 \cdot 2H_2O$ (1) in the 4000–400 cm⁻¹ region.

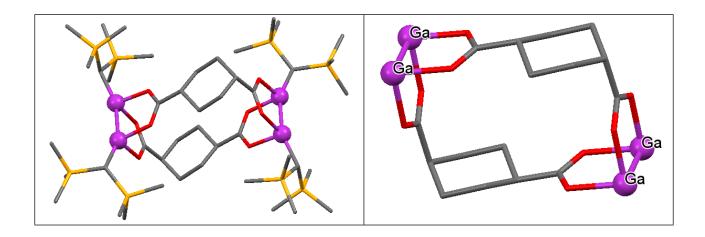


Fig. S2. $\pi \cdots \pi$ interactions (*centroid* ··· *centroid* distance of 4.091 Å) between C21-phenyl and N3-pyridyl rings in $[(CuL)_2(\mu_4\text{-O,O',O'',O'''}\text{-CDC})]_2 \cdot 2H_2O$ (1). Atom colors: carbon, ash; oxygen, red; sulfur, yellow; nitrogen, blue; hydrogen, green; copper, cyan; centroid, pink.

Fig. S3. Representation of the $\pi \cdots \pi$ interaction (*centroid* ··· *centroid* distance of 3.694 Å) between the N3-pyridyl rings and of the H-bond contacts in the structure of $[(CuL)_2(\mu_4-O,O',O'',O'''-CDC)]_2 \cdot 2H_2O$ (1). Atom colors: carbon, ash; oxygen, red; sulfur, yellow;

nitrogen, blue; hydrogen, green; copper, cyan; centroid, pink. Symmetry, *ii*), 1-x, -y, 1-z; *iii*), 1-x, 1-y, 1-z; *iv*) x, y, -1+z.

Fig. S4. Tetranuclear gallium complex² and the *cuboid* cage inside the molecule formed by doubly bridged cyclohexane dicarboxylate.

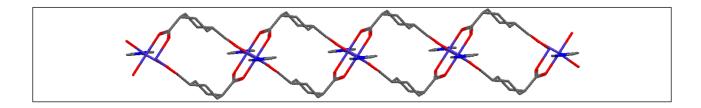
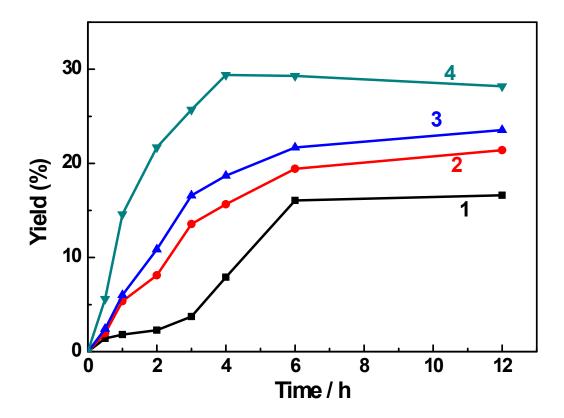



Fig. S5. Polymeric Co(II) compound³ with inter-connected metal-CDC *cuboid* cages.

Scheme S1. Single bridged tetranuclear Cu(II) complex⁴ and quadruple bridged tetranuclear Sn(IV) complex⁵ with cyclohexane dicarboxylate bridge.

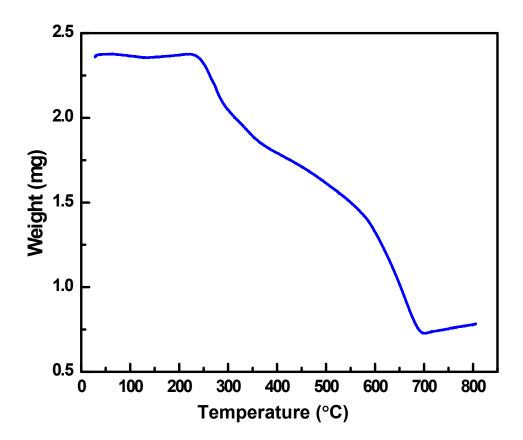

Scheme S2. Single CDC-bridged dinuclear Sn(IV) complex⁵ and doubly CDC-bridged dinuclear Co(II) complex⁶.

Fig. S6. Effect of H_2O_2 amount: accumulation of products (total of cyclohexanol and cyclohexanone, yield percentage) with time in the oxidation of cyclohexane (0.49 M) at 50 °C in CH₃CN, catalyzed by complex 1 (0.6 x 10^{-3} M) in the presence of different concentrations of H_2O_2 : 0.3 M (**curve 1**), 0.8 M (**curve 2**), 1.5 M (**curve 3**) and 2.0 M (**curve 4**).

Thermal Properties of $[(CuL)_2(\mu_4\text{-}O,O',O'',O''''\text{-}CDC)]_2\cdot 2H_2O(1)$

Thermogravimetric analysis was carried out under dinitrogen atmosphere in the range of the room temperature (30 °C) to 800°C at an applied heating rate of 5 °C min⁻¹. Features of the thermal stability of the complex $[(CuL)_2(\mu_4\text{-O,O',O'',O'''}\text{-CDC})]_2\cdot 2H_2O$ (1) are illustrated in Fig. S7. The compound is stable up to the temperature of 230 °C, beyond which it gradually degrades, the weight loss ceasing at 700 °C. The weight loss of 69.0 % along this temperature range may be accounted for the total removal of the organic ligand (L⁻) from the coordination sphere of the metal. It is slightly less than the calculated one (71.6 %) if the final product is assumed to be a mixture of CuSO₄ and CuO in a molar ratio of 1:1.

Fig. S7. Thermogravimetric analysis curve of $[(CuL)_2(\mu_4\text{-O,O',O'',O'''}\text{-CDC})]_2 \cdot 2H_2O$ (1) under dinitrogen atmosphere. Heating rate: 5 °C/min. Weight of the sample: 2.353 mg.

References:

- 1. Y.-M. Ou, Z.-Y. Zhao, Y.-H.Shi, Y.-L. Zhang, Y.-M. Jiang and J. Huaxue, *Chin. J. Struct. Chem.*, 2009, **28**, 457.
- 2. W. Uhl, T. Spies and W. Saak, Eur. J. Inorg. Chem., 1998, 1661.
- 3. Y. Gong, C. W. Hu, H. Li, K. L. Huang and W. Tang, *J. Solid State Chem.*, 2005, **178**, 3152.
- 4. C.-Y. Chen, J.-W. Lu and H.-H. Wei, J. Chin. Chem. Soc., 2009, **56**, 89.
- 5. C. Ma, Y. Wang and R. Zhang, *Inorg. Chim. Acta*, 2009, **362**, 4137.
- 6. H. Kumagai, M. Akita-Tanaka, S. Kawata, K. Inoue, C. J. Kepert and M. Kurmoo, *Cryst. Growth Des.*, 2009, **9**, 2734.