Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting information

1. Glossary

Symbols and the corresponding units in this work:

C^{av}	the statistically average concentration of the analyte in mesopore channel, mol/cm ³
q	the statistically average concentration of the analyte in macropore channel, mol/cm ³
C_0^b	the concentration of target species under the saturated vapor pressure, mol/cm ³
D_{pore}	diffusion coefficient inside the pore, cm ² /s
L	the half average length of the tube, cm
Г _{роге}	the inner radius of mesopore, cm
R	the diameter of the used colloidal particle, cm
Н	the film thickness, cm
$\Gamma_{\rm site}$	the surface concentration of binding sites decorating the mesopore wall, mol/cm ²
f(y)	the distribution function of binding sites inside the pore wall surface
k _{ads}	adsorption rate constant, cm ³ /mol/s
k _{des}	desorption rate constant, s ⁻¹
$k_{app-ads}$	the apparent adsorption rate constant, cm ³ /mol/s
$k_{app-des}$	the apparent desorption rate constant, s ⁻¹
K _{des}	desorption equilibrium constant, cm ³ /mol
ρ,φ	the regulatory factors to describe the molecular imprinting efficiency
у	normalized nanopore axial coordinate
t	time, s
θ	the local pore wall coverage

 β the ratio between the molecule and nanopore size

2. The average length of nanotube in macro-mesoporous film

When the diameter of mesopore is r, the diameter of the equivalent sphere is R, and the thickness of wall is d, in the cross-section of the equivalent sphere, the number of the tube is:

$$N = \frac{R - d}{r + d}$$

When the number of *N* is odd, the length of tube l_n is:

$$l_n = 2\sqrt{(R/2)^2 - [(n-1)(r+d)]^2}$$

Then the average length of tube is:

$$L_{av} = \left\langle l_n \right\rangle = \frac{R + \sum_{n=2}^{(N-1)/2} 2\sqrt{(R/2)^2 - [(n-1)(r+d)]^2}}{N}$$

When the number of *N* is even, the length of tube l_n is:

$$l_n = 2\sqrt{(R/2)^2 - [(n-1/2)(r+d)]^2}$$

Then the average length of tube is:

$$L_{av} = \langle l_n \rangle = \frac{2\sum_{n=1}^{N/2} 2\sqrt{(R/2)^2 - [(n-1/2)(r+d)]^2}}{N}$$

Figure S1. N_2 adsorption-desorption isotherms of the synthesized mesoporous (Top) and macro-mesoporous film (Bottom).

Figure S2. SEM image of the molecularly imprinted macro-mesoporous film after the extraction of all used templates.

Figure S3. Dependence of the sensing behaviors on the variation of λ . $D_{pore} / L^2 = 13$, $2\Gamma_{site} / (C_0^b r_{pore}) = 1000$, $k_{ads} C_0^b = 0.02$, $K_{des} = 0.085$, $k'_{ads} = 1.05 k_{ads}$, $K'_{des} = 0.95 K_{des}$, where $\lambda = 0.2$ for (A), $\lambda = 0.5$ for (B), and $\lambda = 0.8$ for (C).