Electronic Supplementary Information

Ruthenium oxide-based nanocomposites with high specific surface area and improved capacitance as a supercapacitor

Pengfei Wang^{a,b}, Hui Liu^a, Qiangqiang Tan^{a,*}, and Jun Yang^{a,*}

^a State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China 100190. Tel.: 86-10-6252 9377; Fax: 86-10-8254 5008; E-mail: <u>qtan@ipe.ac.cn</u> (Q.T.); Fax: 86-10-8254 4814; Tel: 86-10-8254 4915; E-mail: <u>jyang@ipe.ac.cn</u> (J.Y.)

^b University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China

Financial support from the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-YW-341), the 100 Talents Program of the Chinese Academy of Sciences, National Natural Science Foundation of China (Grant No.: 21173226, 21376247), and State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences (MPCS-2012-A-11) is gratefully acknowledged.

Fig. S1. Histogram of RuO₂/C nanocomposites derived from a solvothermal approach: \overline{d} = 1.80 nm, σ = 0.33 nm, $\overline{\sigma}$ = 16.5%.

Fig. S2. A typical EDX image of the precipitates obtained from the mixture of aqueous $RuCl_3$ and $HAuCl_4$ solution with Ru/Au molar ratio of 3/1.

Fig. S3. Histogram of RuO₂-Au/C nanocomposites derived from a mutual oxidation-reduction approach: \overline{d} = 1.62 nm, σ = 0.24 nm, $\overline{\sigma}$ = 14.8%.