Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Efficient synthesis of pyrene-1-carbothioamides and carboxamides. Tunable solid-state fluorescence of pyrene-1-carboxamides

Anna Wrona-Piotrowicz¹, Janusz Zakrzewski¹, Keitaro Nakatani², Rémi Métivier², Anna Makal³, Krzysztof Woźniak³

¹ Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12,

91-403 Łódź, Poland

²PPSM, ENS Cachan, CNRS, UniverSud, 61 av President Wilson, 94230 Cachan, France

³ Faculty of Chemistry, Warsaw University, Pasteura 1, 02-093 Warszawa, Poland

Supplementary Information

- (S1) Fluorescence measurements
- (S2) CIE chromacity coordinates for compounds 2a-d,h,k-m.
- (S3) X-ray diffraction analysis of *N*-tert-butylpyrene-1-carboxamide 2c
- (S4) IR, ¹H and ¹³C NMR spectra of the synthesized compounds

(S1) Fluorescence measurements:

Corrected fluorescence spectra were obtained on a Fluorolog FL3-221 spectrofluorometer from Horriba Jobin-Yvon, including an integration sphere accessory which allows to record excitation and emission spectra and to determine absolute quantum yield values in the powder state.

Fluorescence decay curves recorded by the time-correlated single-photon counting (TCSPC) method were obtained with femtosecond laser excitation using a Spectra-Physics set-up composed of a Titanium Sapphire laser (Tsunami, Spectra-Physics) pumped by a doubled YAG laser (Millennia, Spectra-Physics), which itself was pumped by two laser diode arrays. Light pulses at 740 nm were selected by optoacoustic crystals at a repetition rate of 4 MHz and then doubled at 370 nm by non-linear crystals. Fluorescence photons were detected through a monochromator by means of a Hamamatsu MCP R3809U photomultiplier connected to a constant-fraction discriminator. The time-to-amplitude converter was purchased from Tennelec. The instrumental response function was recorded before each decay measurement. The fluorescence data were analyzed using the Globals software package developed at the Laboratory for Fluorescence Dynamics at the University of Illinois at Urbana-Champaign, which includes reconvolution analysis and the global non-linear least-squares minimization method.

Fluorescence decay curves recorded using the laser flash photolysis spectrometer were obtained using an Edinburgh instrument LP920, with an NdYAG laser (Continuum) and a tripling crystal used to reach 355nm excitation. The Levenberg-Marquardt algorithm was used for non-linear least square fit (tail fit) as implemented in the L900 software (Edinburgh instrument). The weighted residuals were calculated in order to estimate the quality of the fit.

(S2) CIE chromacity coordinates for compounds 2a-d,h,j-l.

Table 2. CIE chromacity coordinates for compounds 2a-d,h,j-l.

Compound	Х	У
2a	0,1851	0,1663
2b	0,2321	0,4442
2c	0,1535	0,1556
2d	0,1665	0,1832
2h	0,1968	0,296
2j	0,1609	0,2637

2k	0,1736	0,154
21	0,4056	0,4896

(S3) X-ray diffraction analysis of *N*-tert-butylpyrene-1-carboxamide 2c

CCDC deposition number 1006140

Crystals suitable for X-ray analysis were obtained after a long standing (2-3 weeks) in a concentrated solution in DMSO in an open tube at room temperature. The crystals were colorless prisms.

Data for the crystal of **2c** were collected on an Agilent Supernova 4 circle diffractometer system equipped with a copper and molybdenum microsource and an Atlas CCD detector. The data were collected using copper radiation with CrysAlis171[i] software and integrated with CrysAlisPRO [ii] software. Data were corrected for absorption effects using the multi-scan method (SCALE3 ABSPACK[i]).

The structure was solved by direct methods using SXELXS[vi] and refined by full-matrix least squares procedure with SHELXL[vi] within the OLEX2[vii] graphical interface. Figures were produced using Ortep3v2[viii] and Mercury_3.3[ix] software.

All H atoms were visible in the residual density map, but were added geometrically and refined in riding approximation. The position of the H atom involved in the hydrogen bond was refined with restraint applied to the N – H distance as suggested by SHELXL[vi] for 100K.

The quantitative descriptors of the data processing and structure refinement for all compounds are presented in Table .

Identification code	2c
Empirical formula	$C_{21}H_{19}NO$
Formula weight	301.37
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	13.5079(4)
b/Å	11.1040(4)

c/Å	10.4205(3)
$\alpha/^{\circ}$	90
β/°	97.455(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1549.78(8)
Ζ	4
pcalcmg/mm ³	1.292
μ/mm^{-1}	0.614
F(000)	640
Crystal size/mm ³	0.3×0.12×0.02
	CuKα
Radiation Å	$(\lambda = 1.54184)$
20 range for data	
collection	7.962° to 153.866°
	$-17 \le h \le 16$,
	$-13 \le k \le 13$,
Index ranges	$-12 \le l \le 8$
Reflections collected	7469
Independent reflections	3213
Rint	0.0204
Rsigma	0.0316
Data/restraints	
/parameters	3213/1/214
Goodness-of-fit on F ²	1.042
	R1 = 0.0418,
Final R indexes [I>= 2σ (I)]	wR2 = 0.1136
Final R indexes	R1 = 0.0492,
[all data]	wR2 = 0.1212
Largest diff. peak/hole / e	
Å-3	0.264/-0.188

REFERENCES

[i] CrysAlisPro, Agilent Technologies, Version 1.171.36.20 (release 01-02-2013 CrysAlis171.NET)

[ii] CrysAlisRED, Agilent Technologies, Version 1.171.36.20 (release 01-02-2013 CrysAlis171.NET)

[vi] SHELX: G. Sheldrick, A short history of SHELX, Acta Crystallographica Section A, 64 (2008) 112-122.

[vii] OLEX2: O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, Journal of Applied Crystallography, 42 (2009) 339-341.

[viii] ORTEP: L. J. Farrugia, J. Appl. Cryst (2012), 45, 849-854

[ix] MERCURY: C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R.

Taylor, M. Towler and J. van de Streek, J. Appl. Cryst., 39, 453-457, 2006.

(S4) IR, ¹H and ¹³C NMR spectra of the synthesized compounds

