A metal–organic framework with a 9-phenylcarbazole moiety as a fluorescent tag for picric acid explosive detection: collaboration of electron transfer, hydrogen bonding and size matching

Xiaoli Jiang,^a Yanhong Liu,^a Pengyan Wu,^{*a} Lei Wang,^a Qiyuan Wang,^a Guangzhou Zhu,^a Xiuling Li^a and Jian Wang^{*a}

^aSchool of Chemistry and Chemical Engineering & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China

Contents

1. Materials and Methods.	S2
2. Syntheses and Reactions.	S 3
3. X-ray Crystallography (Single-crystal diffraction) and Characterizations.	S 5
4. Studies on the nitro-explosives detection based on Zn-PDA.	S 8
5. References.	S12

1. Materials and Methods.

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. 9-Phenylcarbazole was purchased from Qingdao Frontierchem Co., Ltd., 4-Hydroxy-4'-nitrobiphenyl and 4-Aminophenol was purchased from J&K Scientific, Picric Acid and the other nitroaromatics were provided from Xiya Reagent Company (China).

The elemental analyses of C, H and N were performed on a Vario EL III elemental analyzer. Mass spectra were carried out on a Bruker micro TOF mass spectrometer.

¹HNMR spectra were measured on a Bruker-400 spectrometer with Me₄Si as an internal standard.

X-Ray powder diffraction (XRD) patterns of the Zn–**PDA** was recorded on a Rigaku D/max-2400 X–ray powder diffractometer (Japan) using Cu Ka (1=1.5405 Å) radiation.

Thermogravimetric analysis (TGA) was carried out at a ramp rate of 5 °C/min in a nitrogen flow with a Mettler-Toledo TGA/SDTA851 instrument.

FT-IR spectra were recorded as KBr pellets on Bruker Optics TENSOR 27 FT-IR spectrophotometer.

The solution fluorescent spectra were measured on Hitachi F-4500. Both excitation and emission slit widths were 2.5 nm. The Zn–**PDA** emulsion was prepared by introducing 1 mg of Zn–**PDA** powder into 3.00 mL of ethanol, the intensity was recorded at 366 nm, excitation at 342 nm. For nitro-aromatic molecular detection, the high concentration stock solutions of related nitro-analysts $(2.0 \times 10^{-2} \text{ M})$ were prepared directly in ethanol solvents.

2. Syntheses and Reactions.

2.1 Synthesis of the H₂PDA ligand.

(a) Synthesis of 3,6-diacetyl 9-phenylcarbazole.

To the solution of 9-phenylcarbazole (2.0 g, 8.2 mmol) and 2.4 g (18.0 mmol) AlCl₃ in 100 mL dry CH₂Cl₂, 2.7 mL (28.28 mmol) acetyl chloride in 30 mL dry CH₂Cl₂ was added dropwisely. Then the reaction was carried out at room temperature for 12 hours and 100 mL water was added. The aqueous layer was further extracted with CH₂Cl₂ (3×150 mL); the combined organic layers were dried by Na₂SO₄. The solution was concentrated under reduced pressure to give the crude product, which was purified by flash column chromatography on silica gel (1: 10 hexanes–CH₂Cl₂) to afford a yellow solid (1.46 g, 54.3 %). ¹H NMR (CDCl₃, *ppm*): δ 9.16 (s, 2H_{Ar}), 8.08 (d, *J* = 8.0 Hz, 2H_{Ar}), 7.73 (d, *J* = 8.0 Hz, 2H_{Ar}), 7.67-7.61 (m, 3H_{Ar}), 7.42 (d, *J* = 8.0 Hz, 2H_{Ar}), 2.72 (s, 6H-_{COCH}).

(b) Synthesis of 9-phenylcarbazole-3,6-dicarboxylic acid.^{S1}

3 mL Br₂ were added dropwisely to the solution of NaOH (7 g, 0.18 mol) in 30 mL water on ice-bath, and further stirred for 20 min. The solution were dumpage to a isobarically funnel and were added dropwisely to a solution of 3,6-diacetyl 9-phenylcarbazole (1.2 g, 3.6 mmol) in 30 mL 1,4-Dioxane on 45 °C during 5 h. Then the mixture was put on ice-bath, saturated hydroxylamine HCl was added to deoxidize excessive sub-bromo-sodium. The solution was acidified by muriatic acid and the solid product was filtered and dried under vacuum. The crude was recrystallized from acetic acid to afford pure products as a white solid. (1.0 g, 84.5 %). ¹H NMR (DMSO- d_6 , *ppm*): δ 12.84 (s, 2H_{COOH}), 9.0 (s, 2H_{Ar}), 8.10 (d, J = 8.0 Hz, 2H_{Ar}), 7.76-7.63 (m, 5H_{Ar}), 7.44 (d, J = 8.0 Hz, 2H_{Ar}). ¹³C NMR (DMSO- d_6 , *ppm*): δ 167.7 (C_{COOH}), 143.5 (C_{Ar}), 135.9 (C_{Ar}), 130.5 (C_{Ar}), 128.7 (C_{Ar}), 128.3 (C_{Ar}), 127.1 (C_{Ar}), 123.6 (C_{Ar}), 123.0 (C_{Ar}), 122.5 (C_{Ar}), 109.9 (C_{Ar}). Anal calc. for C₂₀H₁₃NO₄: C 72.50, H 3.95, N 4.23 %; Found: C 72.52, H 3.94, N 4.22 %. TOF MS calcd for C₂₀H₁₃NO₄ 331.32, found 331.41.

2.2 Synthesis of Zn-PDA.

A mixture of 9-phenylcarbazole-3,6-dicarboxylic acid (H₂**PDA**) (40 mg, 62.5 mM) and $Zn(NO_3)_2 \cdot 6H_2O$ (75 mg,125 mM) were dissolved in dimethylformamide/methanol (9/1, 10 mL) in a screw capped vial. The resulting mixture was placed in an oven at 100 °C for 3 days. Colorless crystals with block-shape were obtained after filtration. Yield: 75 %. Anal calc. for $C_{21}H_{11}NO_8Zn$: C 53.58, H 2.36, N 2.98%; Found: C 53.6, H 2.39, N 2.96%.

3. X-ray Crystallography (Single-crystal diffraction) and Characterizations.

3.1 Crystal data of Zn-PDA:

 $C_{21}H_{11}NO_8Zn$, M = 470.68, Monoclinic, space group C2/c, a = 25.951(3), b = 11.8662(14), c = 20.436(4) Å, $\alpha = 90.00$, $\beta = 125.847(6)$, $\gamma = 90.00$, V = 5101.1(13) Å³, Z = 8, Dc = 1.226 g cm⁻³, μ (Mo-K α) = 0.71073 mm⁻¹, T = 296(2) K. 4481 unique reflections [$R_{int} = 0.0773$]. Final R_I [with $I > 2\sigma(I)$] = 0.0758, wR_2 (all data) = 0.2699, GOOF = 1.002. CCDC number: 1009908.

3.2 Crystallography:

Intensities were collected on a Bruker SMART APEX CCD diffractometer with graphitemonochromated Mo-K α ($\lambda = 0.71073$ Å) using the SMART and SAINT programs. The structure was solved by direct methods and refined on F^2 by full-matrix least-squares methods with SHELXTL *version* 5.1. Non-hydrogen atoms of the ligand backbones were refined anisotropically. Hydrogen atoms within the ligand backbones were fixed geometrically at calculated positions and allowed to ride on the parent non-hydrogen atoms.

3.3 Figure S1 The coordination configuration of the Zn(1) centre in Zn–**PDA**. The asymmetric mode: A, 1-x, y, -1.5-z; B, 1.5 –x, 1.5-y, z; C, -0.5+x, 1.5-y, -0.5-z.

3.4 Selective bond distance (Å) and angle (°) in Zn–**PDA**.

Selective bond distance (Å): Zn(1)-O(1W) 1.929(4), Zn(1)-O(2) 1.937(5), Zn(1)-O(3B) 1.994(4), Zn(1)-O(4C) 2.031(4).

Selective bond angle (°): O(1W)-Zn(1)-O(2) 138.5(2), O(1W)-Zn(1)-O(3B) 102.94(18), O(2)-Zn(1)-O(3B) 97.81(19), O(1W)-Zn(1)-O(4C) 104.63(16), O(2)-Zn(1)-O(4C) 106.95(19), O(3B)-Zn(1)-O(4C) 99.2(2).

3.5 Figure S2 PXRD patterns of the as-synthesized (red), the simulated from single X-ray crystal structure (black).

3.6 Figure S3 TGA traces of Zn–**PDA** ranging from room temperature to 500 °C

4. Studies on the nitro-explosives detection based on Zn-PDA.

4.1 FigureS4 The PL spectra of 250 ppm Zn-PDA in ethanol solvent when excited at 342 nm.

4.2 Figure S5 Families of various fluorescence spectra of 250 *ppm* Zn–**PDA** in ethanol solution upon the addition of 0.35 mM of different selected analytes.

S8

4.3 Table S1 Summary of linear correlation coefficients (R), quenching constants (K_{sv}) for the Zn–**PDA** for the sensing of various nitroaromatics at room temperature.

Analysts	Molecular structure	R	$K_{\rm sv}~({ m M}^{-1})$
Picric Acid (PA)		0.997	44501.8
2,4,6-Trinitrotoluene (TNT)		0.992	9482.7
2,4-dinitrotoluene (DNT)		0.992	6753.2
Nitrobenzene (NB)	NO ₂	0.993	1157.4
<i>p</i> -Nitrophenol (<i>p</i> - NP)	HONO2	0.991	38973.8
<i>o</i> -Nitrophenol (<i>o</i> - NP)	NO ₂ OH	0.991	10830.2
<i>m</i> -Nitrophenol (<i>m</i> - NP)	OH NO ₂	0.991	5997.6
<i>p</i> -Nitroaniline (<i>p</i> - NA)	H ₂ NNO ₂	0.992	43424.2
o-Nitroaniline (o-NA)		0.990	8141.2
<i>m</i> -Nitroaniline (<i>m</i> - NA)		0.996	5622.2
<i>p</i> -Nitrotoluene (<i>p</i> - NT)		0.998	5107.2
<i>o</i> -Nitrotoluene (<i>o</i> -NT)	NO ₂	0.990	5684.9
<i>m</i> -Nitrotoluene (<i>m</i> - NT)	NO ₂	0.990	3149.5
4-Hydroxy-4'-nitrobiphenyl (HNBP)		0.997	400.9
<i>p</i> -Aminophenol (<i>p</i> - AP)		-	-

4.4 Figure S6 FT-IR spectra of *p*-NA (top), Zn–**PDA** obtained after the absorption of *p*-NA (middle) and Zn–**PDA** (bottom).

Compounds	$v_{as}(-NH_2) (cm^{-1})^{S2}$	$\upsilon_{s}(-\mathrm{NH}_{2})$ (cm ⁻¹)	δ (N–H) (cm ⁻¹)
p-NA	3558.1	3481.2	1634.8
Zn− PDA ⊃ <i>p</i> -NA	3534.5	3468.4	1596.1

5. References.

S1. J.Wang, C. He, P. Y. Wu, J. Wang, C. Y. Duan, J. Am. Chem. Soc., 2011, 133, 12402.

S2. U. Okwieka, K. H. Natkaniec, T. Misiaszek, W. Medycki, J. Baran and M. M. Szostak, J. Chem. Phys., 2009, **131**, 144505.