
Supporting Information

Enhanced visible-light-induced photocatalytic performance of novel ternary semiconductor coupling system based on hybrid Zn-In mixed metal oxide/g- C_3N_4 composites

Meng Lan, Guoli Fan, Lan Yang, Feng Li*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical

Technology, P.O.BOX 98, Beijing, 100029, P.R. China

Fig. S1 FT-IR spectra of pure *g*-C₃N₄ (a), 5-MMO/C₃N₄ (b), 3-MMO/C₃N₄ (c) 1-MMO/C₃N₄ (d) and ZnIn-MMO (e). In the case of ZnIn-MMO/g-C₃N₄ composites, there are the strong absorption peaks for the typical C=N and C-N stretching modes of the C₃N₄ heterocycles at 1238, 1323, 1410, 1561, and 1658 cm⁻¹ and the characteristic breathing mode of the s-triazine units at 806 cm⁻¹.

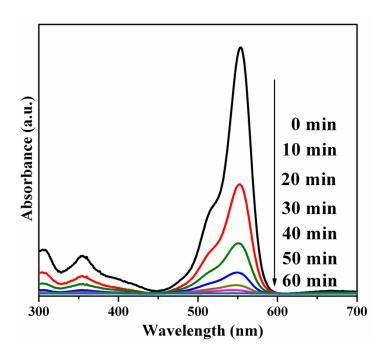


Fig.S2 Absorption changes of RhB solution during the photo-degradation process over the 3- MMO/C_3N_4 sample under visible light irradiation.

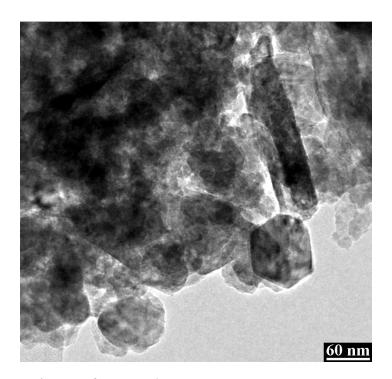
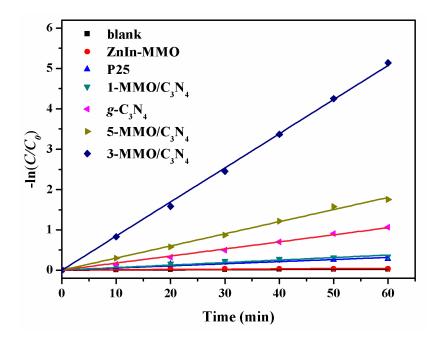



Fig. S3. Typical TEM image of 5-MMO/C₃N₄

Fig. S4. Pseudo-first-order kinetic for the photo-degradation of RhB over different samples under visible light irradiation.

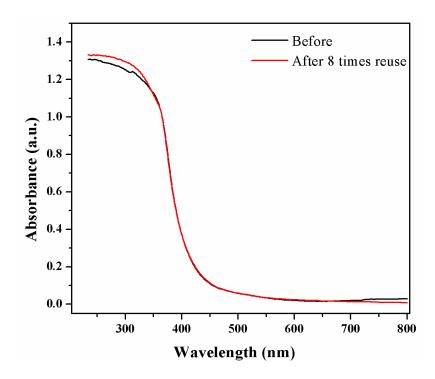
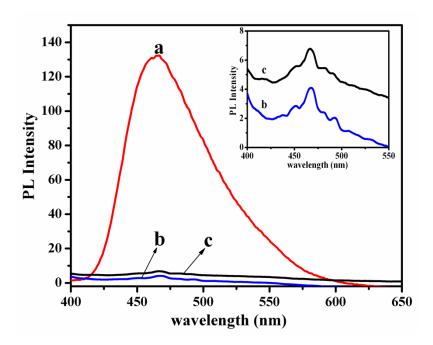



Fig. S5. UV-vis diffuse absorption spectra of 3-MMO/C₃N₄ before use and after eight cycles.

Fig. S6 Room temperature PL emission spectra of g- C_3N_4 (a) 3-MMO/ C_3N_4 (b) and ZnIn-MMO (c). Inset shows the enlarged PL emission spectra of 3-MMO/ C_3N_4 (b) and ZnIn-MMO (c).