Electronic supplementary Information

Exploiting oriented attachment in stabilizing La³⁺ doped gallium oxide nano-spindles

M Ibrahim Dar^{1,2} S Sampath³ and S A Shivashankar^{1,2*}

¹Centre for Nano Science and Engineering, ² Materials Research Centre, and ³ Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore 560012, India

E-mail: shivu@cense.iisc.ernet.in; Fax: +91 80 2360 4656; Tel: +9180 2293 3323

Figure S1: Powder X-ray diffraction patterns of pure gallium oxides nano-spindles.

Figure S2: Comparative analysis of powder X-ray diffraction patterns of pure and La-doped β -Ga₂O₃ nano-spindles.

Figure S3: Pure (a & b) and La-doped (c & d) β -Ga₂O₃ nano-spindles: (a & c) Bright-field TEM images and (b & d) SAED patterns.

Figure S4: FESEM micrographs (a) low magnification (b) high magnification of pure α -GaOOH nano-spindles synthesized using 0.5 M sodium azide.

Figure S5: Room temperature photoluminescence spectra of undoped and La-doped α -Ga₂O₃ nano-spindles. In the main manuscript, the broad peak ranging from 300 nm to 520 nm of the photoluminescence spectrum has been deconvoluted using three peaks corresponding to UV

(~340 nm), blue (~420 nm) and green (~500 nm). The photoluminescence spectrum of the doped samples is broad and asymmetric and Gaussian curve fitting was applied in the OriginPro8 software to deconvolute the PL curves.