Supplementary information for:

Effects of Cu addition on band gap energy, density of state effective

mass and charge transport properties in Bi₂Te₃ composites

Hyeon Jin Yu,^{‡a,b} Mahn Jeong,^{‡,a} Young Soo Lim,^{*a} Won-Seon Seo,^a O-Jong Kwon,^c Cheol-Hee Park,^{*,c} and Hae-Jin Hwang^b

^{*a*} Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology, Seoul, Republic of Korea, ^{*b*} LG Chem/Research Park, Daejeon, Republic of Korea, and ^{*c*} Division of Materials Science and Engineering, Inha University, Seoul, Republic of Korea.

[‡]H.J. Yu and M. Jeong contributed equally to this work

E-mail: <u>yslim@kicet.re.kr</u> (Y.S. Lim) and <u>pmoka@lgchem.com</u> (C.-H. Park)

Figure S1. XPS Cu $2p_{3/2}$ spectrum of Cu_{0.04}Bi₂Te₃ composite.

Although the XPS spectrum was not very sharp due to the small content of Cu in the composite, the binding energy exhibited a maximum peak around 933 eV and it was quite consistent to the reported values. In literature, the binding energy of Cu has been reported to be ~ 933 eV regardless of its oxidation state (Cu, Cu₂Te, CuTe).^{S1~S3} Especially, Teeter reported that the binding energies for Cu⁰, Cu¹⁺ and Cu²⁺ were equal within about 0.05 eV.^{S1} Although the identification of the oxidation state of the doped Cu was not possible due to the similarity in their binding energies, our result clearly reveals the existence of Cu-Te bonding in the Cu_xBi₂Te₃ composite.

References

- S1. G. Teeter, Appl. Phys. Lett., 2007, 102, 034504.
- S2. E.P. Domashevskaya et al., J. Electron Spectrosc. Relat. Phenom., 2001, 114-116, 901.
- S3. J. Carmona-Rodríguez et al., J. Mater. Chem., 2011, 21, 13001.