Electronic Supplementary Information (ESI) Development of a Novel 'One-Pot' Synthetic Method for Preparation of $(Mn_{0.2}Ni_{0.4}Zn_{0.4}Fe_2O_4)_x$ -(BaFe₁₂O₁₉)_{1-x} nanocomposites and Study of their Microwave Absorption and Magnetic Properties Subhenjit Hazra^a, Barun Kumar Ghosh^a, Hrishikesh Ravindra Joshi^a, Manoj Kumar Patra^b, Raj Kumar Jani^b, Sampat Raj Vadera^b, Narendra Nath Ghosh^{a*} Corresponding author. Tel./fax: +91 832 2580318/2557033. E-mail address: naren70@yahoo.com (N. N. Ghosh) Room temperature M-H curves, measured using VSM, for $(Mn_{0.2}Ni_{0.4}Zn_{0.4}Fe_2O_4)_x$ - $(BaFe_{12}O_{19})_{1-x}$ nanocomposites (X= 0.85, 0.75, 0.5, 0.25) prepared by one-pot and physical mixing method are shown below: Fig. S1: Room temperature hysteresis loops for $(Mn_{0.2}Ni_{0.4}Zn_{0.4}Fe_2O_4)_x$ - $(BaFe_{12}O_{19})_{1-x}$ nanocomposites (X= 0.85, 0.75, 0.5, 0.25) prepared by (a) one-pot and (b) physical mixing method.