Sulphur bridged [22]annulene[2.1.2.1]s based organic field-effect transistors: Interplay of the steric bulk and charge transport

Tarunpreet Singh Virk,^a Kamaljit Singh,^{*a} Yunke Qin,^b Wei Xu^b and Daoben Zhu^{*b}

^aDepartment of Chemistry, Centre for Advanced Studies-I, Guru Nanak Dev University,
Amritsar – 143 005, Punjab, India, Fax number: (+) 91-2258819/20, E-mail:
kamaljit19in@yahoo.co.in
^bBeijing National Laboratory for Molecular Science, CAS Key Laboratory of Organic Solids,
Institute of Chemistry, Chinese Academy of Sciences, Beijing – 100190, P. R. China. E-mail:
wxu@iccas.ac.cn

Table of Contents

Copies of ¹ H, ¹³ C NMR, IR and Mass Spectra	S 3
Theoretical Calculations	S50
UV-Vis spectrum of 6b and 6c	S76
Normalised UV-Visible spectra of thin films	S77
Cyclic Voltamograms	S79
TGA graphs	S80
X-Ray	S82
Transfer and Output curves	S91
CIF Files of 6a & 6b	S92

Copies of ¹H, ¹³C NMR, Mass and IR Spectra:

Figure S1: ¹H NMR spectrum of **3a**.

Figure S2: ¹³C NMR spectrum of 3a.

Figure S3: Mass spectrum of 3a.

Figure S4: IR spectrum of 3a.

Figure **S5**: ¹H NMR spectrum of **3b**.

Figure S6: ¹³C NMR spectrum of 3b.

Figure S7: Mass spectrum of 3b.

Figure S8: IR spectrum of 3b.

Figure **S9**: ¹H NMR spectrum of **3c**.

Figure **S10**: ¹³C NMR spectrum of **3c**.

Figure S11: Mass spectrum spectrum of 3c.

Figure **S12**: IR Spectrum of **3c**.

Figure **S13**: ¹H NMR spectrum of **4a**.

Figure S14: ¹³C NMR spectrum of 4a.

Figure **S15**: Mass spectrum of **4a**.

Figure **S16**: IR Spectrum of **4a**.

Figure **S17**: ¹H NMR Spectrum of **4b**.

Figure S18: ¹³C NMR spectrum of 4b.

Figure **S19**: Mass spectrum of **4b**.

Figure S20: IR Spectrum of 4b.

Figure **S21**: ¹H NMR Spectrum of **4c**.

Figure S22: ¹³C NMR Spectrum of 4c.

Figure S23: Mass spectrum of 4c.

Figure S24: IR Spectrum of 4c.

Figure S25: ¹H NMR Spectrum of 5a.

Figure S26: ¹³C NMR Spectrum of 5a.

Figure S27: Mass spectrum of 5a.

Figure S28: IR Spectrum of 5a.

Figure **S29**: ¹H NMR Spectrum of **5b**.

Figure **S30**: ¹³C NMR Spectrum of **5b**.

Figure S31: Mass spectrum of 5b.

Figure S32: IR Spectrum of 5b.

Figure S33: ¹H NMR Spectrum of 5c.

Figure S34: ¹³C NMR Spectrum of 5c.

Figure **S35**: Mass Spectrum of **5c**.

Figure **S36**: IR Spectrum of **5c**.

Figure **S37**: ¹H NMR Spectrum of **6a**.

Figure S38: ¹³C NMR Spectrum of 6a.

Figure **S39**: Mass Spectrum of **6a**.

Figure S40: IR Spectrum of 6a.

Figure **S41**: ¹H NMR Spectrum of **6b**.

Figure **S42**: ¹³C NMR Spectrum of **6b**.

Figure **S43**: Mass Spectrum of **6b**.

Figure S44: IR Spectrum of 6b.

Figure S45: ¹H NMR Spectrum of 6c.

Figure **S46**: Mass Spectrum of **6c**.

Figure **S47**: IR Spectrum of **6c**.

Theoretical Calculations

Computational methods

All the calculations were performed at the density functional theory (DFT) level with the B3LYP functional, the gradient correction of the exchange functional by Becke and the correlation functional by Lee, Yang and Parr. The 6-311G(d) split valence plus polarization basis set was used in Gaussian 09 program.^{[1],[2]} The results were analyzed and visualized on Gauss View 5.0.9.

^{[&}lt;sup>1</sup>] Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, W. H. G. E.; Robb, M. A.;Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M; Toyota, K.; Fukuda,R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta,Jr., J. E.; Ogliaro, F.;Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi,R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski,V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas,

O.; Foresman, J. B.; Ortiz, J.V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2010.

^{[&}lt;sup>2</sup>] Details including the references for the DFT method and basis set can be found online at the homepage of Gaussian, Inc.; http://www.gaussian.com/

Figure S48: Energy minimized structure of **6a** by DFT method at B3LYP/6-311G(d) level using the Gaussion09 program (Top and side views shown above).

Figure S49: The ghost (Bq) atoms (in purple) were placed (0.5 Å interval) in the centre of **6a**. The -ve NICS values clearly indicate the aromaticity of **6a**. NICS is maximum at 0 Å and decreases as the distance of the ghost atom is increased in 0.5 Å intervals.

Figure S50: As shown above is the behaviour of the four thiophene rings of **6a**. The NICS are negative and maximum at their centres and decreases as we move farther. Further the NICS at the centre is far higher than the normal thiophene showing their increased aromatic character when they are part of the annulene ring. Phenyl rings are showing the normal behavior like benzene but with slightly decreased NICS values.

Figure S51: Energy minimized structure of **6b** by DFT method at B3LYP/6-311G(d) level using the Gaussion09 program (Top and side views shown above).

Figure S52: The ghost (Bq) atoms were placed (0.5 Å interval) in the centre of the molecule (in purple). The -ve NICS values clearly indicate the aromaticity of **6b**. NICS is maximum at 0 Å and decreases as the distance of the ghost atoms is increased in 0.5 Å intervals.

Figure S53: As shown above is the behaviour of the four thiophene rings of **6b**. The NICS are negative and maximum at their centres and decreases as we move farther. Further the NICS at the centre is far higher than the normal thiophene showing their increased aromatic character when they are part of the annulene ring. Phenyl rings are showing the normal behaviour like benzene but with slightly decreased NICS values.

Figure S54: Energy minimized structure of **6c** by DFT method at B3LYP/6-311G(d) level using the Gaussion09 program (Top and side views shown above).

Figure S55: The ghost (Bq) atoms (in purple) were placed (0.5 Å interval) in the centre of **6c**. The -ve NICS values clearly indicate the aromaticity of **6c**. NICS is maximum at 0 Å and decreases as the distance of the ghost atom is increased in 0.5 Å intervals.

Figure S56: As shown above is the behaviour of the four thiophene rings of **6c**. The NICS are negative and maximum at their centres and decreases as we move farther. Further the NICS at the centre is far higher than the normal thiophene showing their increased aromatic character when they are part of the annulene ring. Phenyl rings are showing the normal behaviour like benzene but with slightly decreased NICS values.

Figure S57: Energy minimized structure of antiaromatic dication **7b**. Upper (top view), lower (side view). The antiaromatic dication is no longer planar and is highly puckered. The aromaticity is thus lost.

Figure S58: Placement of the ghost atoms (at 0.5 Å intervals) at the centre of all the individual rings as well as the main ring of **7b** (anti aromatic). The +ve NICS values (NICS 1 = 7.3) indicates the antiaromatic behaviour of the dication **7b**. The resulting NICS vs. r (distance from centre in Å) graph is also shown for the main centre of the **7b**. The graphs for the four thiophene rings are also shown below (Figure **S59**).

Figure S59: For **7b**, as shown at the top, at the centre of a set of two thiophene rings aromaticity (-ve NICS) is lost after 1Å distance and antiaromatic ring current is then observed due to the impact of the main annulene ring. The other set of thiophenes maintain their aromaticity as they points outwards to the annulene core as shown in Fig. **S58**. They also show a dip at 1 Å which is not shown by a free thiophene ring. The *p-iso*propylphenyl rings shows the normal aromaticity.

LUMO+1 (163), -0.07502 a.u.

LUMO (162), -0.09383 a.u.

HOMO-1 (160), -0.18602 a.u.

Figure S60: HOMO-LUMO and their neighbouring energy levels for **6a** are shown along with their energies (left) in a.u.. HOMO-LUMO levels are showing high degree of delocalisation on the 22Π porphyrin ring periphery.

LUMO (170), -0.09384 a.u.

LUMO+1 (171), -0.07457 a.u.

HOMO-1 (168), -0.18595 a.u.

Figure S61: HOMO-LUMO and their neighbouring energy levels for **6b** are shown along with their energies (left) in a.u.. HOMO-LUMO levels are showing high degree of delocalisation on the 22Π porphyrin ring periphery.

Figure S62: HOMO-LUMO and their neighbouring energy levels for **6c** are shown along with their energies (left) in a.u.. HOMO-LUMO levels are showing high degree of delocalisation on the 22Π porphyrin ring periphery.

Cartesian coordinates

Table S1: Cartesian coordinates of 6a

_____ Coordinates (Angstroms) Center Atomic Atomic Х Y Ζ Number Number Type _____ _____ _____ 1 16 0 -1.521043 -1.575011 -0.078609 2 6 0 -0.545640 -4.248436 0.068016 3 6 0 -1.604901 -3.324570 0.090890 4 6 0 -2.959524-3.699417 0.233653 5 1 0 -3.246780-4.7383080.350324 6 6 0 -3.857933-2.655015 0.228105 7 0 1 -4.924863-2.7821240.350296 8 6 0 -3.272555 -1.375805 0.068422 9 6 0 -3.946420 -0.138715 0.030080 10 6 0 -5.445588 -0.190573 0.034451 11 6 0 -6.152001 -0.673857 -1.073116 12 1 0 -1.011504 -5.603766 -1.946737 13 0 6 -7.543047 -0.723072-1.064859 14 1 0 -8.066717 -1.102644-1.938339 15 0 -0.295764 6 -8.277181 0.046683 16 0 -0.921890 -5.268542 0.120147 1 17 16 0 -1.6268451.464538 0.130952 18 0 6 -0.842786 4.199674 -0.0175950 19 6 -1.8344933.203582 -0.03854520 6 0 -3.212399 3.482130 -0.17826721 1 0 -3.5723924.498145 -0.29470322 6 0 -0.169539 -4.0350822.377110 23 0 1 -5.108635 2.428370 -0.289137 24 6 0 -3.360662 1.142465 -0.01074225 6 0 -6.176252 0.238180 1.148492 0 26 1 -5.646646 0.606509 2.021196 27 6 0 -7.567265 0.183449 1.152484 28 1 0 -8.109679 0.511801 2.035169 0 29 1 -1.2897795.190779 -0.07044230 16 0 1.521045 1.575012 -0.07860531 0 6 0.545639 4.248438 0.068002 32 0 6 0.090891 1.604898 3.324571 33 6 0 2.959519 3.699419 0.233670 34 0 1 4.738311 0.350343 3.246773 35 6 0 3.857930 2.655019 0.228134 36 1 0 4.924857 2.782131 0.350338 37 6 0 3.272556 1.375808 0.068444 38 6 0 3.946424 0.138719 0.030101 39 6 0 5.445591 0.190574 0.034483 40 6 0 6.176249 -0.2382101.148516

SCF Done: E(RB3LYP) = -3059.21133209 a.u. after 17 cycles.

-0.606560

2.021207

5.646639

0

41

1

42	6	0	7.567263	-0.183494	1.152511
43	1	0	8.109674	-0.511878	2.035187
44	6	0	8.277186	0.295740	0.046724
45	1	0	0.921890	5.268544	0.120128
46	16	0	1.626845	-1.464531	0.130956
47	6	0	0.842785	-4.199670	-0.017574
48	6	0	1.834491	-3.203577	-0.038530
49	6	0	3.212397	-3.482127	-0.178248
50	1	0	3.572389	-4.498143	-0.294679
51	6	0	4.035081	-2.377108	-0.169524
52	1	0	5.108634	-2.428373	-0.289120
53	6	0	3.360664	-1.142462	-0.010731
54	6	0	6.152012	0.673880	-1.073071
55	1	0	5.603780	1.011555	-1.946683
56	6	0	7.543056	0.723084	-1.064809
57	1	0	8.066731	1.102675	-1.938277
58	1	0	1.289779	-5.190775	-0.070410
59	6	0	-9.789716	-0.315795	0.037808
60	6	0	-10.403356	0.975160	-0.529374
61	1	0	-10.158951	-0.473361	1.056601
62	1	0	-10.140797	-1.170187	-0.550521
63	1	0	-11.496055	0.926718	-0.521720
64	1	0	-10.101169	1.846594	0.057776
65	1	0	-10.081518	1.145078	-1.560355
66	6	0	9.789721	0.315755	0.037850
67	6	0	10.403342	-0.975112	-0.529556
68	1	0	10.158958	0.473141	1.056670
69	1	0	10.140815	1.170241	-0.550333
70	1	0	11.496042	-0.926684	-0.521902
71	1	0	10.101148	-1.846640	0.057450
72	1	0	10.081494	-1.144853	-1.560563

Table S2: Cartesian coordinates of 6b

SCF Done	: E (H	RB3LYP) =	-3137.85301	104 a.u. after	6 cycles.
Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Ζ
1	16	0	1.573998	-1.493556	0.046314
2	6	0	0.694730	-4.202217	-0.044847
3	6	0	1.720981	-3.242439	-0.080798
4	6	0	3.088970	-3.571367	-0.211942

S67

5	1	0	3.413839	-4.601688	-0.303274
6	6	0	3.949377	-2.495618	-0.226183
7	1	0	5.021221	-2.586651	-0.337621
8	6	0	3.317502	-1.234863	-0.098160
9	6	0	3.946474	0.025550	-0.087888
10	6	0	5.447355	0.024007	-0.120159
11	6	0	6.189519	-0.333273	1.011925
12	1	0	5.667953	-0.605611	1.923973
13	6	0	7.580354	-0.336938	0.981599
14	1	0	8.122463	-0.614564	1.880615
15	6	0	8.282681	0.010739	-0.179340
16	1	0	1.106286	-5.208849	-0.091435
17	16	0	1.570753	1.544563	-0.116983
18	6	0	0.696115	4.252969	0.013680
19	6	0	1.723062	3.293405	0.004106
20	6	0	3.095630	3.622397	0.074566
21	1	0	3.424190	4.652716	0.151710
22	6	0	3.955897	2.546756	0.050155
23	1	0	5.031698	2.637519	0.113741
24	6	0	3.318994	1.285963	-0.050124
25	6	0	6.142555	0.375827	-1.280477
26	1	0	5.586836	0.652542	-2.170754
27	6	0	7.535839	0.366039	-1.306202
28	1	0	8.051079	0.637678	-2.223615
29	1	0	1.109163	5.259663	0.042122
30	16	0	-1.570730	1.544562	0.116566
31	6	0	-0.696101	4.252970	-0.014051
32	6	0	-1.723048	3.293408	-0.004445
33	6	0	-3.095623	3.622405	-0.074769
34	1	0	-3.424187	4.652727	-0.151847
35	6	0	-3.955889	2.546765	-0.050289
36	1	0	-5.031698	2.637529	-0.113747
37	6	0	-3.318977	1.285970	0.049888
38	6	0	-3.946460	0.025562	0.087698

39	6	0	-5.447339	0.024031	0.120189	
40	6	0	-6.189697	-0.333014	-1.011839	
41	1	0	-5.668291	-0.605167	-1.924034	
42	6	0	-7.580529	-0.336694	-0.981268	
43	1	0	-8.122791	-0.614147	-1.880246	
44	6	0	-8.282654	0.010739	0.179866	
45	1	0	-1.109148	5.259665	-0.042477	
46	16	0	-1.574004	-1.493556	-0.046671	
47	6	0	-0.694746	-4.202219	0.044399	
48	6	0	-1.720994	-3.242441	0.080397	
49	6	0	-3.088981	-3.571366	0.211573	
50	1	0	-3.413853	-4.601688	0.302882	
51	6	0	-3.949380	-2.495612	0.225884	
52	1	0	-5.021221	-2.586642	0.337354	
53	6	0	-3.317501	-1.234856	0.097884	
54	6	0	-6.142337	0.375613	1.280700	
55	1	0	-5.586462	0.652151	2.170935	
56	6	0	-7.535615	0.365813	1.306668	
57	1	0	-8.050696	0.637264	2.224226	
58	1	0	-1.106301	-5.208853	0.090955	
59	6	0	9.803846	0.004396	-0.221888	
60	6	0	10.379004	-1.402395	0.018400	
61	6	0	10.410665	1.024840	0.756952	
62	1	0	10.096568	0.308858	-1.233849	
63	1	0	9.980144	-2.122862	-0.700212	
64	1	0	11.468847	-1.397187	-0.078088	
65	1	0	10.138695	-1.767076	1.021409	
66	1	0	10.034289	2.032730	0.564469	
67	1	0	10.173132	0.775238	1.795281	
68	1	0	11.500697	1.048410	0.665221	
69	6	0	-9.803813	0.004362	0.222703	
70	6	0	-10.378989	-1.402423	-0.017587	
71	6	0	-10.410854	1.024880	-0.755919	
72	1	0	-10.096335	0.308728	1.234750	

73	1	0	-9.979973	-2.122939	0.700888
74	1	0	-11.468814	-1.397244	0.079115
75	1	0	-10.138869	-1.767018	-1.020673
76	1	0	-10.034444	2.032757	-0.563436
77	1	0	-10.173554	0.775370	-1.794324
78	1	0	-11.500866	1.048434	-0.663942

 Table S3: Cartesian coordinates of 6c

SCF Done:	E (RB3LYP) = -3216.48950982	a.u. after 7 cycles.
		2

Center	Atomic	Atomic	Coord	inates (Angs	troms)
Number	Number	Туре	Х	Y	Z
	1.6		1 572 420	1.515.004	0.070220
1	16	0	1.572439	1.515694	0.070320
2	6	0	0.695720	4.224839	-0.027351
3	6	0	1.722775	3.265357	-0.040788
4	6	0	3.093920	3.594726	-0.133676
5	1	0	3.421233	4.625554	-0.209314
6	6	0	3.954313	2.518848	-0.131893
7	1	0	5.028928	2.609937	-0.212883
8	6	0	3.318989	1.257483	-0.029263
9	6	0	3.947080	-0.003039	-0.011921
10	6	0	5.448371	-0.002787	-0.017157
11	6	0	6.165407	-0.323244	-1.170770
12	1	0	5.627147	-0.573002	-2.079679
13	6	0	7.560446	-0.320834	-1.174599
14	1	0	8.068432	-0.571266	-2.097827
15	6	0	8.295127	-0.003135	-0.027341
16	1	0	1.108154	5.231606	-0.061550
17	16	0	1.571983	-1.521501	-0.077110
18	6	0	0.695920	-4.230712	0.023340

19	6	0	1.722934	-3.271333	0.031159
20	6	0	3.094752	-3.600831	0.114605
21	1	0	3.422498	-4.631747	0.187141
22	6	0	3.955156	-2.525116	0.107385
23	1	0	5.030328	-2.616285	0.180218
24	6	0	3.319264	-1.263506	0.009847
25	6	0	6.173737	0.319089	1.135813
26	1	0	5.640453	0.568818	2.047620
27	6	0	7.563765	0.315540	1.127379
28	1	0	8.084209	0.566040	2.045912
29	1	0	1.108497	-5.237508	0.054833
30	16	0	-1.571985	-1.521489	0.077271
31	6	0	-0.695929	-4.230713	-0.022874
32	6	0	-1.722940	-3.271332	-0.030800
33	6	0	-3.094759	-3.600837	-0.114207
34	1	0	-3.422508	-4.631760	-0.186627
35	6	0	-3.955161	-2.525119	-0.107107
36	1	0	-5.030333	-2.616294	-0.179927
37	6	0	-3.319266	-1.263499	-0.009710
38	6	0	-3.947080	-0.003028	0.011923
39	6	0	-5.448371	-0.002775	0.017158
40	6	0	-6.165408	-0.323107	1.170804
41	1	0	-5.627150	-0.572765	2.079742
42	6	0	-7.560447	-0.320702	1.174631
43	1	0	-8.068434	-0.571039	2.097885
44	6	0	-8.295128	-0.003131	0.027337
45	1	0	-1.108508	-5.237511	-0.054252
46	16	0	-1.572436	1.515691	-0.070476
47	6	0	-0.695711	4.224844	0.026897
48	6	0	-1.722768	3.265366	0.040440
49	6	0	-3.093913	3.594748	0.133289
50	1	0	-3.421223	4.625585	0.208814
51	6	0	-3.954307	2.518871	0.131622
52	1	0	-5.028922	2.609972	0.212600

53	6	0	-3.318986 1.257494 0.02913	31
54	6	0	-6.173736 0.318975 -1.13584	48
55	1	0	-5.640452 0.568607 -2.0476	82
56	6	0	-7.563765 0.315425 -1.1274	15
57	1	0	-8.084209 0.565827 -2.0459	75
58	1	0	-1.108142 5.231616 0.06098	85
59	6	0	9.833188 0.006602 0.0070	59
60	6	0	10.332365 1.419124 0.3867	751
61	6	0	10.332145 -1.010687 1.0583	337
62	6	0	10.451107 -0.368443 -1.3513	352
63	1	0	10.001772 2.162560 -0.343	767
64	1	0	9.967266 1.733204 1.3673	48
65	1	0	11.426021 1.442014 0.4191	100
66	1	0	9.997391 -2.022965 0.8155	558
67	1	0	11.425983 -1.017103 1.0949	909
68	1	0	9.970451 -0.774239 2.0610	539
69	1	0	11.541890 -0.348202 -1.279	963
70	1	0	10.164767 -1.374669 -1.669	389
71	1	0	10.163662 0.332161 -2.1400	025
72	6	0	-9.833188 0.006597 -0.007	068
73	6	0	-10.332369 1.419084 -0.3869	885
74	6	0	-10.332140 -1.010785 -1.058	258
75	6	0	-10.451109 -0.368334 1.3513	374
76	1	0	-10.001782 2.162585 0.3435	571
77	1	0	-9.967262 1.733079 -1.3675	07
78	1	0	-11.426024 1.441968 -0.4192	243
79	1	0	-9.997378 -2.023040 -0.8153	94
80	1	0	-11.425977 -1.017211 -1.094	829
81	1	0	-9.970449 -0.774419 -2.0615	81
82	1	0	-11.541892 -0.348109 1.279	980
83	1	0	-10.164760 -1.374529 1.6693	500
84	1	0	-10.163674 0.332342 2.1399	987

S72

Table S4: Cartesian coordinates of 7b

SCF Done: E(RB3LYP) = -3137.33883693 a.u. after 17 cycles.

Center	Atomic	Atomic	Coor	dinates (Angstro	oms)	
Number	Number	Туре	Х	Y	Z	
1	16	0	1.657807	-1.548426	0.371858	
2	6	0	0.653938	-4.149680	-0.179051	
3	6	0	1.654565	-3.119886	-0.367877	
4	6	0	2.836532	-3.332127	-1.077472	
5	1	0	3.032429	-4.252641	-1.613095	
6	6	0	3.720016	-2.254818	-1.035778	
7	1	0	4.663024	-2.228998	-1.564834	
8	6	0	3.249932	-1.172754	-0.286166	
9	6	0	3.937110	0.055534	-0.035558	
10	6	0	5.387792	0.059443	-0.054371	
11	6	0	6.131345	-1.030729	0.466383	
12	1	0	5.610242	-1.856607	0.935884	
13	6	0	7.511396	-1.012406	0.455695	
14	1	0	8.050738	-1.842838	0.896840	
15	6	0	8.226057	0.065988	-0.102650	
16	1	0	1.069512	-5.141156	-0.340882	
17	16	0	1.649253	1.658092	-0.398359	
18	6	0	0.656662	4.260040	0.168452	
19	6	0	1.659769	3.229808	0.340934	
20	6	0	2.853858	3.441521	1.029891	
21	1	0	3.059508	4.361956	1.561989	
22	6	0	3.736338	2.363958	0.972234	
23	1	0	4.688691	2.337695	1.484269	
24	6	0	3.252692	1.282227	0.230905	
25	6	0	6.106454	1.152903	-0.597447	
26	1	0	5.567181	1.976481	-1.050036	
27	6	0	7.488140	1.139269	-0.632374	
28	1	0	8.015350	1.969656	-1.090022	

29	1	0	1.075033	5.251406	0.323557
30	16	0	-1.649233	1.658102	0.398107
31	6	0	-0.656679	4.260021	-0.168921
32	6	0	-1.659789	3.229773	-0.341284
33	6	0	-2.853913	3.441440	-1.030194
34	1	0	-3.059591	4.361841	-1.562340
35	6	0	-3.736390	2.363881	-0.972422
36	1	0	-4.688770	2.337585	-1.484405
37	6	0	-3.252705	1.282198	-0.231050
38	6	0	-3.937109	0.055520	0.035523
39	6	0	-5.387790	0.059432	0.054417
40	6	0	-6.131375	-1.030768	-0.466232
41	1	0	-5.610302	-1.856674	-0.935717
42	6	0	-7.511426	-1.012442	-0.455464
43	1	0	-8.050795	-1.842898	-0.896529
44	6	0	-8.226051	0.065986	0.102860
45	1	0	-1.075052	5.251370	-0.324130
46	16	0	-1.657825	-1.548460	-0.371919
47	6	0	-0.653921	-4.149678	0.179080
48	6	0	-1.654544	-3.119879	0.367902
49	6	0	-2.836477	-3.332085	1.077564
50	1	0	-3.032348	-4.252570	1.613246
51	6	0	-3.719963	-2.254777	1.035858
52	1	0	-4.662945	-2.228929	1.564960
53	6	0	-3.249917	-1.172753	0.286165
54	6	0	-6.106418	1.152925	0.597472
55	1	0	-5.567117	1.976528	1.049982
56	6	0	-7.488102	1.139295	0.632480
57	1	0	-8.015284	1.969710	1.090111
58	1	0	-1.069495	-5.141152	0.340927
59	6	0	9.738689	0.079071	-0.128674
60	6	0	10.306464	-1.119835	-0.912892
61	6	0	10.319633	0.141754	1.299033
62	1	0	10.045359	0.991861	-0.649885

63	1	0	9.913508	-1.159200	-1.931485
64	1	0	11.393465	-1.037876	-0.978083
65	1	0	10.079814	-2.071205	-0.424170
66	1	0	9.943171	1.005758	1.851457
67	1	0	10.082554	-0.757538	1.873854
68	1	0	11.407588	0.223754	1.251782
69	6	0	-9.738682	0.079076	0.128968
70	6	0	-10.306424	-1.119803	0.913248
71	6	0	-10.319700	0.141722	-1.298712
72	1	0	-10.045320	0.991883	0.650168
73	1	0	-9.913416	-1.159141	1.931822
74	1	0	-11.393422	-1.037836	0.978492
75	1	0	-10.079806	-2.071189	0.424542
76	1	0	-9.943263	1.005710	-1.851179
77	1	0	-10.082652	-0.757587	-1.873520
78	1	0	-11.407652	0.223727	-1.251407

Figure S63: UV-Vis. spectra of 5b (DCM), 6b (DCM) and 7b (H₂SO₄). (Inset shows the partial auto-oxidation of 5b into 6b).

Figure S64: UV-Vis. spectra of 5c (DCM), 6c (DCM) and 7c (H₂SO₄). (Inset shows the partial auto-oxidation of 5c into 6c).

Figure S65: Normalised UV-Vis. absorption spectra of thin film of 6a at room temperature.

Figure S66: Normalised UV-Vis. absorption spectra of thin film of 6b at room temperature.

Figure S67: Normalised UV-Vis. absorption spectra of thin film of 6c at room temperature.

Figure S68: Cyclic voltammogram (CV) for **6b** (DCM, electrolyte TBAPF₆; working electrode: Pt; ref. electrode: Ag/AgCl; Scan rate 100 mV s⁻¹).

Figure S69: Cyclic voltammogram (CV) for **6c** (DCM, electrolyte TBAPF₆; working electrode: Pt; ref. electrode: Ag/AgCl; Scan rate 100 mV s⁻¹).

Figure S70: TGA Analysis of **6a** under N₂ with temperature rise of 10°C per minute. **6a** is highly stable as it is having a high thermal decomposition temp. of about >371°C.

Figure S71: TGA Analysis of **6b** under N_2 with temperature rise of 10°C per minute. **6b** is highly stable as it is having a high thermal decomposition temp. of about >391°C.

Figure S72: TGA Analysis of **6c** under N_2 with temperature rise of 10°C per minute. **6c** is highly stable as it is having a high thermal decomposition temp. of about >407°C.

X-Ray Diffraction Analysis of 6a:

Single crystals of **6a** suitable for an X-Ray crystal structure determination were grown in a dark, quiet and undisturbed place from dry Toluene (3 weeks).

Table S5: The crystallographic data and structure refinement for 6a:

Empirical formula	C38 H30 S4
Formula weight	614.86
Temperature	150(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P 21/n
Unit cell dimensions	a = 8.3972(2) A alpha = 90 deg. b = 15.4871(4) A beta = 92.993(3) deg. c = 11.8460(5) A gamma = 90 deg.
Volume	1538.45(8) A^3
Z, Calculated density	2, 1.327 Mg/m^3
Absorption coefficient	0.336 mm^-1
F(000)	644
Crystal size	0.33 x 0.26 x 0.21 mm
Theta range for data collection	2.90 to 25.00 deg.
Limiting indices	-9<=h<=9, -18<=k<=15, -13<=l<=14
Reflections collected / unique	10334 / 2692 [R(int) = 0.0444]
Completeness to theta $= 25.00$	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9328 and 0.8972
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2692 / 0 / 192
Goodness-of-fit on F^2	1.049
Final R indices [I>2sigma(I)]	R1 = 0.0381, wR2 = 0.0957

R indices (all data)

Extinction coefficient

Largest diff. peak and hole

R1 = 0.0525, wR2 = 0.1089

0.0107(13)

0.195 and -0.197 e.A^-3

Table S6:	Torsion	angles	[deg]	for	6a :
-----------	---------	--------	-------	-----	-------------

C	(4) - S(1) - C(1) - C(11) #1	179 8(2)
C	(4) - S(1) - C(1) - C(2)	0.00(18)
C	(11) #1-C(1) -C(2) -C(3)	180.0(2)
S	(1) - C(1) - C(2) - C(3)	-0.2(3)
C	(1) - C(2) - C(3) - C(4)	0.3(3)
C	(2) - C(3) - C(4) - C(5)	179.1(2)
C	(2) - C(3) - C(4) - S(1)	-0.3(3)
C	(1) - S(1) - C(4) - C(5)	-179.2(2)
C	(1) - S(1) - C(4) - C(3)	0.18(18)
C	(3) - C(4) - C(5) - C(6)	-175.0(3)
S	(1) - C(4) - C(5) - C(6)	4.3(4)
C((4) - C(5) - C(6) - C(7)	1.0(5)
C((5) - C(6) - C(7) - C(8)	-178.6(3)
C ((5)-C(6)-C(7)-S(2)	1.3(4)
С ((10) - S (2) - C (7) - C (8)	1.76(19)
C ((10) -S (2) -C (7) -C (6)	-178.1(2)
C ((6) -C(7) -C(8) -C(9)	178.5(2)
S ((2) -C (7) -C (8) -C (9)	-1.4(3)
С ((7)-C(8)-C(9)-C(10)	0.1(3)
C ((8) -C(9) -C(10) -C(11)	-175.6(2)
С ((8) -C (9) -C (10) -S (2)	1.2(3)
С ((7) -S (2) -C (10) -C (9)	-1.69(18)
C ((7) - S(2) - C(10) - C(11)	175.2(2)
С ((9) -C (10) -C (11) -C (1) #1	177.4(2)
S ((2) -C (10) -C (11) -C (1) #1	1.1(3)
C ((9) - C(10) - C(11) - C(12)	-0.8(3)
S ((2) - C(10) - C(11) - C(12)	-177.07(16)
C ((1) #1 - C (11) - C (12) - C (17)	-84.2(3)
C	(10) - C(11) - C(12) - C(17)	94.2(3)
C	(1) # I = C(11) = C(12) = C(13)	96.4(3)
	(10) - C(11) - C(12) - C(13)	-85.2(3)
	(11) - C(12) - C(13) - C(14)	0.0(4)
	(11) - C(12) - C(13) - C(14) (12) - C(13) - C(14) - C(15)	-1/9.0(2)
	(12) = C(13) = C(15) = C(15)	-0.3(4)
	(13) - C(14) - C(15) - C(18)	$179 \ 4(2)$
C	(14) - C(15) - C(16) - C(17)	1 , 3 , 4 (2) 0 1 (4)
C	(18) - C(15) - C(16) - C(17)	-179.5(2)
C	(13) - C(12) - C(17) - C(16)	-0.9(4)
C	(11) - C(12) - C(17) - C(16)	$179_{-}7(2)$
C	(15) - C(16) - C(17) - C(12)	0.5(4)
C	(14) - C(15) - C(18) - C(19)	81.4(3)
C	(16) -C (15) -C (18) -C (19)	-99.0(3)
-	, , , , /	(-)

Symmetry transformations used to generate equivalent atoms: #1 - x + 2, -y, -z

The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 986822). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/data_request/cif.

X-Ray Diffraction Analysis of 6b:

Single crystals of **6b** suitable for an X-Ray crystal structure determination were grown in a dark, quiet and undisturbed place from dry DCM with a toluene layer upon it (2 weeks).

 Table S7: The crystallographic data and structure refinement for 6b:

Empirical formula	C80 H68 S8
Formula weight	1285.82
Temperature	150(2) K
Wavelength	1.5418 A
Crystal system, space group	Orthorhombic, P n a 21
Unit cell dimensions	a = 19.7591(3) A alpha = 90 deg. b = 34.5783(4) A beta = 90 deg. c = 9.5257(2) A gamma = 90 deg.
Volume	6508.30(18) A^3
Z, Calculated density	4, 1.312 Mg/m^3
Absorption coefficient	2.888 mm^-1
F(000)	2704
Crystal size	0.33 x 0.26 x 0.21 mm
Theta range for data collection	3.40 to 49.99 deg.
Limiting indices	-19<=h<=19, -34<=k<=34, -7<=l<=9
Reflections collected / unique	27082 / 5655 [R(int) = 0.0229]
Completeness to theta $= 25.00$	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.5822 and 0.4491
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5655 / 1 / 802
Goodness-of-fit on F ²	1.014
Final R indices [I>2sigma(I)]	R1 = 0.0387, wR2 = 0.1022

R indices (all data)

Absolute structure parameter

Extinction coefficient

Largest diff. peak and hole

R1 = 0.0407, wR2 = 0.1048

-0.01(2)

0.00021(3)

0.299 and -0.211 e.A^-3

Table S8: 7	Forsion	angles	[deg]	for	6b :
-------------	---------	--------	-------	-----	-------------

C(40) = C(1) = C(2) = C(3)	177 2(5)
C(40) = C(1) = C(2) = C(3) S(1) = C(1) = C(2) = C(3)	-0.2(6)
C(1) = C(2) = C(3)	0.2(0)
C(1) = C(2) = C(3) = C(4)	0.1(7) 178 0(5)
C(2) = C(3) = C(4) = S(1)	1/8.0(5)
C(2) = C(3) = C(4) = C(15)	-172 3(5)
S(1) - C(4) - C(5) - C(15)	5 2 (8)
C(3) = C(4) = C(5) = C(6)	5.2(0) 7 5(7)
S(1) - C(4) - C(5) - C(6)	-1749(3)
C(15) = C(5) = C(6) = C(7)	-115 2 (6)
C(4) - C(5) - C(6) - C(7)	64 9(7)
C(15) = C(5) = C(6) = C(11)	65 4 (7)
C(4) - C(5) - C(6) - C(11)	-114.5(6)
C(11) - C(6) - C(7) - C(8)	-0.8(9)
C(5) - C(6) - C(7) - C(8)	179.8(6)
C(6) - C(7) - C(8) - C(9)	-1.1(11)
C(7) - C(8) - C(9) - C(10)	3.4(11)
C(7) - C(8) - C(9) - C(12)	176.8(7)
C(8) - C(9) - C(10) - C(11)	-3.9(11)
C(12) - C(9) - C(10) - C(11)	-177.1(7)
C(7) - C(6) - C(11) - C(10)	0.4(9)
C(5)-C(6)-C(11)-C(10)	179.8(6)
C(9)-C(10)-C(11)-C(6)	2.0(10)
C(8)-C(9)-C(12)-C(13)	-62.0(14)
C(10)-C(9)-C(12)-C(13)	111.1(11)
C(8)-C(9)-C(12)-C(14)	139.3(9)
C(10)-C(9)-C(12)-C(14)	-47.7(12)
C(4)-C(5)-C(15)-C(16)	-177.6(5)
C(6)-C(5)-C(15)-C(16)	2.6(7)
C(4)-C(5)-C(15)-S(2)	3.9(8)
C(6)-C(5)-C(15)-S(2)	-176.0(3)
C(5)-C(15)-C(16)-C(17)	-176.9(5)
S(2) - C(15) - C(16) - C(17)	1.9(6)
C(15) - C(16) - C(17) - C(18)	-2.5(7)
C(16) - C(17) - C(18) - C(19)	-1/8./(5)
C(16) - C(17) - C(18) - S(2)	1.8(6)
C(17) = C(18) = C(19) = C(20)	1/3.9(6)
S(2) = C(18) = C(19) = C(20)	-6.7(10)
C(10) - C(20) - C(21) C(10) - C(20) - C(21)	-0.1(12) -171.9(6)
C(19) - C(20) - C(21) - C(22) C(19) - C(20) - C(21) - S(3)	-1/1.0(0) 7 2(10)
C(20) = C(20) = C(21) = S(3) C(20) = C(21) = C(22) = C(23)	178 7 (5)
S(3) = C(21) = C(22) = C(23)	-0.4(6)
C(21) = C(22) = C(23) = C(24)	-0.3(7)
C(22) - C(23) - C(24) - C(25)	-1797(5)
C(22) = C(23) = C(24) = S(3)	0.8(6)
C(23) - C(24) - C(25) - C(35)	176.0(5)
S(3) - C(24) - C(25) - C(35)	-4.6(8)
C(23) - C(24) - C(25) - C(26)	-3.8(8)
S(3) -C(24) -C(25) -C(26)	175.6(3)
C (35) –C (25) –C (26) –C (27)	96.8(7)
C (24) -C (25) -C (26) -C (27)	-83.4(7)
C(35)-C(25)-C(26)-C(31)	-81.5(8)
C(24)-C(25)-C(26)-C(31)	98.3(7)
C(31)-C(26)-C(27)-C(28)	-4.7(11)

	1	7	6	•	9	(7)	
			0	•	6	(1	2)
			2	•	8	(1	2)
-	1	7	7	•	8	(8)	
		-	2	•	1	(1	2)
	1	7	8	•	5	(8)	
			5	•	4	(1	1)
-	1	7	6	•	3	(6)	
		-	2	•	0	(1	1)
	1	7	1	•	0	(1	1)
		-	8	•	4	(1	7)
	-	1	5	•	4	(1	4)
	1	6	5	•	2	(9)	
	1	7	8	•	4	(5)	
		-	1	•	8	(9)	
		-	1	•	2	(8)	
	1	7	8	•	6	(4)	
-	1	7	8	•	8	(5)	
			0	•	9	(7)	
		-	0	•	3	(8)	
	1	7	7	•	5	(6)	
		_	0	•	4	(7)	
-	1	7	7	•	8	(6)	
		_	0	•	2	(1	1)
		-	1	•	6	(1	2)
	1	7	9	•	5	(6)	
		-	3	•	7	(1	0)
	1	7	9	•	5	(6)	
		_	0	•	8	(7)	
		_	0	•	5	(8)	
_	1	7	8	•	1	(5)	
			1	•	6	(7)	
	1	7	0	•	2	(5)	
		_	9	•	4	(8)	
		_	8	•	1	(8)	
	1	_	~		-				
	Т	7	2	•	3	(4)	
	1	7 1	2 3	•	3 4	(4 7))	
	1 -	7 1 6	2 3 5		3 4 1	(((4 7 8)))	
	1 - -	7 1 6 6	2 3 5 6		3 4 1 9	((((4 7 8 7)))	
	1 - - 1	7 1 6 1	2 3 5 6 4	• • •	3 4 1 9 6	() () () () () () () () () () () () () (4 7 8 7 6)))))	
	1 - 1	7 1 6 1	2 3 5 6 4 2	• • • •	3 4 1 9 6 4	() () () () () () () () () () () () () (4 7 8 7 6 9))))))	
_	1 - 1 1	7 1 6 1 7	2 3 5 4 2 7	• • • •	3 4 9 6 4 4		4 7 8 7 6 9 6)))))))	
_	1 - 1 1	7 1 6 1 7 -	23564271	• • • • •	3 4 1 9 6 4 4 0		4 7 8 7 6 9 6 1))))))))
_	1 - 1 1	7 1 6 6 1 7 -	235642710	· · · · ·	341964405		478769611))))))) 1))
_	1 - 1 1 1	7 1 6 6 1 7 7	2356427107	· · · · ·	3419644058	() () () () () () () () () () () () () (4787696117))))))))]])))))))))))))))))))))))))))))))
_	1 - 1 1 1	7 1 6 6 1 7 7	23564271070	• • • • • • • • •	34196440587	() () () () () () () () () () () () () (47876961171)))))))01)2)))
_	1 - 1 1 1	71661 7-77 7	235642710707	• • • • • • • • •	341964405876		478769611718))))))))))))))))))))))))))))))))))))))))))
_	1 - 1 1 1	71661 7-77-7-	2356427107072	• • • • • • • • • •	3419644058762		4787696117181))))))))]]))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
_	1 - 1 1 1 1	71661 77 7-7	23564271070727	· · · · · · · · · · · · · · · · · · ·	34196440587625		47876961171817))))))))))))))))))))))))))))))))))))))))))
_	1 - 1 1 1	71661 77 7-7	235642710707270		341964405876257		478769611718171)))))))))))))))))))))))))))))))))))))))))))))
_	1 1 1 1 	71661 7-77 7-7 3	2356427107072703		3419644058762574		4787696117181711)))))))))]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]))))))
_	1 - 1 1 1 1 1 1	71661 77 7-7 34	23564271070727034		34196440587625748		47876961171817111)))))))))))))))))))))))))))))))))))))))	
_	1 - 1 1 1 1 1 1 1	71661 77 7-7 342	235642710707270340		341964405876257481		478769611718171119)))))))))))))))))))))))))))))))))))))))	
_	1 - 1 1 1 1 1 - 1 1 - 1 - 1 - - - - - - - - - - - - -	71661 77 7-7 3426	2356427107072703401		3419644058762574817		4787696117181711191)))))))))))))))))))))))))))))))))))))))	
_	1 - 1 1 1 1 1 - 1 1 - 1 1 - 1 1 - 1 - 1 - 1 - 1 - - - - - - - - - - - - -	71661 7-7 7-7 34267	23564271070727034018		34196440587625748173		47876961171817111915)))))))01)2)0)250)2)	
_	1 - 1 1 1 1 1 - 1 1 - 1 1 - 1 1 - 1 - 1 - 1 - - 1 - - - - - - - - - - - - -	71661 7-77 7-7 34267-	235642710707270340183		341964405876257481734		478769611718171119157)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
_	1 - 1 1 - 1 1 - 1 1 - 1 1 - 1	71661 7-7 7-7 34267-	2356427107072703401831	• • • • • • • • • • • • • • • • • • • •	3419644058762574817345		4787696117181711191578))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
_	1 - 1 1 1 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - - - - - - - - - - - - -	71661 7-77 34267-7	23564271070727034018316	• • • • • • • • • • • • • • • • • • • •	34196440587625748173459		47876961171817111915784))))))))1)2)0)250)2)))))))))))))))))))))))))))))))))))))))))))

C(25)-C(26)-C(27)-C(28)
C(26)-C(27)-C(28)-C(29)
C(27) - C(28) - C(29) - C(30)
C(27) - C(28) - C(29) - C(32)
C(28) = C(29) = C(30) = C(31)
C(20) C(20) C(30) C(31)
C(32) = C(23) = C(30) = C(31)
C(27) = C(26) = C(31) = C(30)
C(25) - C(26) - C(31) - C(30)
C(29)-C(30)-C(31)-C(26)
C(30)-C(29)-C(32)-C(34)
C(28)-C(29)-C(32)-C(34)
C(30)-C(29)-C(32)-C(33)
C(28)-C(29)-C(32)-C(33)
C(24) - C(25) - C(35) - C(36)
C(26) - C(25) - C(35) - C(36)
C(24) - C(25) - C(35) - S(4)
C(24) C(25) C(35) S(4)
C(20) = C(20) = C(30) = S(4)
C(25) = C(35) = C(36) = C(37)
S(4) - C(35) - C(36) - C(37)
C(35)-C(36)-C(37)-C(38)
C(36)-C(37)-C(38)-C(39)
C(36)-C(37)-C(38)-S(4)
C(37)-C(38)-C(39)-C(40)
S(4)-C(38)-C(39)-C(40)
C(38) - C(39) - C(40) - C(1)
C(2) - C(1) - C(40) - C(39)
S(1) - C(1) - C(40) - C(39)
C(80) = C(41) = C(42) = C(43)
C(80) = C(41) = C(42) = C(43)
S(5) = C(41) = C(42) = C(43)
C(41) - C(42) - C(43) - C(44)
C(42) - C(43) - C(44) - C(45)
C(42)-C(43)-C(44)-S(5)
C(43)-C(44)-C(45)-C(55)
S(5)-C(44)-C(45)-C(55)
C(43)-C(44)-C(45)-C(46)
S(5)-C(44)-C(45)-C(46)
C(44) - C(45) - C(46) - C(51)
C(55) - C(45) - C(46) - C(51)
C(44) - C(45) - C(46) - C(47)
C(55) = C(45) = C(46) = C(47)
C(51) - C(46) - C(47) - C(48)
C(45) C(40) C(47) C(40)
C(45) = C(40) = C(47) = C(40)
C(46) - C(47) - C(48) - C(49)
C(4/) - C(48) - C(49) - C(50)
C(47) - C(48) - C(49) - C(52)
C(48)-C(49)-C(50)-C(51)
C(52)-C(49)-C(50)-C(51)
C(47)-C(46)-C(51)-C(50)
C(45)-C(46)-C(51)-C(50)
C(49) - C(50) - C(51) - C(46)
C(48) - C(49) - C(52) - C(53)
C(50) - C(49) - C(52) - C(53)
C(48) = C(49) = C(52) = C(54)
C(50) = C(40) = C(52) = C(54)
C(34) = C(45) = C(32) = C(34)
C(44) = C(45) = C(55) = C(56)
C(46) = C(45) = C(55) = C(56)
C(44) - C(45) - C(55) - S(6)
C(46)-C(45)-C(55)-S(6)

C(45)-C(55)-C(56)-C(57)	
S(6)-C(55)-C(56)-C(57)	
C(55)-C(56)-C(57)-C(58)	
C(58)-C(59)-C(60)-C(61)	
C(59) - C(60) - C(61) - C(62)	
C(59) - C(60) - C(61) - S(7)	
S(7) - C(61) - C(62) - C(63)	
C(61) - C(62) - C(63) - C(64)	
C(62) -C(63) -C(64) -C(65)	
C(62)-C(63)-C(64)-S(7)	
C(63)-C(64)-C(65)-C(75)	
S(7)-C(64)-C(65)-C(75)	
C(63) - C(64) - C(65) - C(66)	
S(7) = C(64) = C(65) = C(66) C(75) = C(65) = C(66) = C(71)	
C(64) - C(65) - C(66) - C(71)	
C(75) - C(65) - C(66) - C(67)	
C(64)-C(65)-C(66)-C(67)	
C(71)-C(66)-C(67)-C(68)	
C(65)-C(66)-C(67)-C(68)	
C(66) - C(67) - C(68) - C(69)	
C(67) = C(68) = C(69) = C(70)	
C(68) - C(69) - C(70) - C(71)	
C(72) - C(69) - C(70) - C(71)	
C(67)-C(66)-C(71)-C(70)	
C(65)-C(66)-C(71)-C(70)	
C(69) -C(70) -C(71) -C(66)	
C(68) - C(69) - C(72) - C(73)	
C(68) - C(69) - C(72) - C(73)	
C(70) - C(69) - C(72) - C(74)	
C(64) -C(65) -C(75) -C(76)	
C(66)-C(65)-C(75)-C(76)	
C(64) -C(65) -C(75) -S(8)	
C(66) - C(65) - C(75) - S(8)	
C(05) - C(75) - C(76) - C(77)	
C(75) - C(76) - C(77) - C(78)	
С (76) –С (77) –С (78) –С (79)	
C(76)-C(77)-C(78)-S(8)	
C (77) -C (78) -C (79) -C (80)	
S(8) - C(78) - C(79) - C(80)	
C(42) = C(41) = C(80) = C(41)	
S(5) - C(41) - C(80) - C(79)	
C (56) -C (57) -C (58) -C (59)	
C(56)-C(57)-C(58)-S(6)	
C(60)-C(59)-C(58)-C(57)	
C(60) - C(59) - C(58) - S(6)	
C(3) = C(4) = S(1) = C(1) C(5) = C(4) = S(1) = C(1)	
C(40) - C(1) - S(1) - C(4)	
C(2) - C(1) - S(1) - C(4)	
C(19)-C(18)-S(2)-C(15)	
C(17) -C(18) -S(2) -C(15)	
C(16)-C(15)-S(2)-C(18)	

178.7(5)	
-1.5(6)	
2.8(7) 0.9(12)	
165.2(7)	
-14.7(10)	
1.2(6)	
-1.1(8)	
-176.9(5) 0 5(7)	
179.4(5)	
2.4(8)	
-175.4(4)	
-108.8(6)	
69.2(7) 69.8(7)	
-112.3(6)	
-1.7(9)	
-0.5(11)	
2.5(11)	
-177.7(6) -2.3(11)	
177.9(7)	
1.9(10)	
-1/9.5(7) 0.1(12)	
-90.7(10)	
89.0(9) 134 2(7)	
-46.0(10)	
-172.3(5)	
5.4(7) 7.7(7)	
-174.5(3)	
179.6(5)	
-0.3(8) 1.6(7)	
176.5(5)	
-1.9(6) -176.8(7)	
1.3(11)	
-0.2(13)	
1.0(11)	
178.3(5)	
-2.7(6) -167.6(6)	
13.5(10)	
-0.2(4)	
-176.9(5)	
0.2(4)	
180.0(5) -0.6(4)	
-0.7(4)	

C(5)-C(15)-S(2)-C(18)	178.1(4)
C(20)-C(21)-S(3)-C(24)	-178.3(5)
C(22)-C(21)-S(3)-C(24)	0.8(4)
C(23)-C(24)-S(3)-C(21)	-0.9(4)
C(25)-C(24)-S(3)-C(21)	179.6(4)
C(25) - C(35) - S(4) - C(38)	178.7(5)
C(36) - C(35) - S(4) - C(38)	-1.0(4)
C(39) - C(38) - S(4) - C(35)	-177.1(6)
C(37) - C(38) - S(4) - C(35)	0.8(4)
C(43) - C(44) - S(5) - C(41)	-1.7(4)
C(45) - C(44) - S(5) - C(41)	177.9(5)
C(80) - C(41) - S(5) - C(44)	-178.9(6)
C(42) - C(41) - S(5) - C(44)	1.4(4)
C(57) - C(58) - S(6) - C(55)	1.5(4)
C(59) - C(58) - S(6) - C(55)	-179.5(5)
C(56) - C(55) - S(6) - C(58)	-0.1(4)
C(45) - C(55) - S(6) - C(58)	179.7(4)
C(62) - C(61) - S(7) - C(64)	-0.8(4)
C(60) - C(61) - S(7) - C(64)	179.1(5)
C(63) - C(64) - S(7) - C(61)	0.2(4)
C(65) - C(64) - S(7) - C(61)	177.7(5)
C(79) - C(78) - S(8) - C(75)	-177.0(5)
C(77) - C(78) - S(8) - C(75)	1, 4(4)
C(65) - C(75) - S(8) - C(78)	179.4(4)
C(76) - C(75) - S(8) - C(78)	-0.6(4)
	3. 0 (1)

The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 948111). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/data_request/cif.

Transfer and output curves:

Figure S73: Typical transfer (a) and output (b) characteristics of FET devices based on **6a**, with OTS-treated SiO₂/Si substrate ($T_s = 100$ °C). Typical transfer (c) and output (d) characteristics of FET devices based on **6b**, with OTS-treated SiO₂/Si substrate ($T_s = 25$ °C). Typical transfer (e) and output (f) characteristics of FET devices based on **6c**, with OTS-treated SiO₂/Si substrate ($T_s = 25$ °C).

CIF Files for 6a:

data gndu007 _audit_creation method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C38 H30 S4' _chemical_formula_weight 614.86 loop _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real atom type scat dispersion imag atom type scat source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'S' 'S' 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Monoclinic' symmetry cell setting _symmetry_space_group_name_H-M 'P 21/n' loop _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell length a 8.3972(2) cell length b 15.4871(4) _cell_length_c 11.8460(5) _cell_angle alpha 90.00 _cell_angle_beta 92.993(3) _cell_angle_gamma 90.00 _cell_volume 1538.45(8) _cell_formula units Z 2 _cell_measurement temperature 150(2) _cell_measurement_reflns used 3500 cell_measurement_theta_min3.5760cell_measurement_theta_max28.3920 _cell_measurement_theta max _exptl_crystal_description block _exptl_crystal_colour black _exptl_crystal size max 0.33 exptl crystal size mid 0.26 exptl crystal size min 0.21

? _exptl_crystal_density_meas _exptl_crystal_density_diffrn 1.327 _exptl_crystal_density method 'not measured' _exptl_crystal_F_000 644 _exptl_absorpt coefficient mu 0.336 exptl absorpt correction T min 0.8972 exptl absorpt correction T max 0.9328 exptl absorpt correction type 'multi-scan' _exptl_absorpt_process_details CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.31.7 (release 18-10-2006 CrysAlis171 .NET) (compiled Oct 18 2006,16:28:17) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. ; _diffrn_ambient temperature 150(2)_diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK∖a diffrn radiation source 'Micro-Focus (Mo) X-ray Source' _diffrn_radiation monochromator graphite 'OXFORD DIFFRACTION SUPER NOVA' diffrn measurement device type _diffrn_measurement_method '\w/q-scan' _diffrn_detector_area_resol mean 15.9948 _diffrn_standards_number _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay % ? _diffrn_reflns number 10334 _diffrn_reflns av R equivalents 0.0444 _diffrn_reflns_av_sigmaI/netI 0.0410 diffrn reflns limit h min -9 diffrn_reflns_limit_h_max 9 _diffrn_reflns_limit_k_min -18 _diffrn_reflns_limit_k_max 15 _diffrn_reflns_limit_l_min -13 diffrn reflns limit l max 14 diffrn reflns theta min 2.90 diffrn reflns theta max 25.00 reflns number total 2692 reflns number gt 2113 _reflns_threshold_expression >2sigma(I) computing data collection 'CrysAlis CCD, Oxford Diffraction Ltd.,' computing cell refinement 'CrysAlis RED, Oxford Diffraction Ltd.,' computing data reduction 'CrysAlis RED, Oxford Diffraction Ltd., ' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Ortep3' 'Shelx97' computing publication material _refine_special_details

```
;
```

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative $F^{2^{-}}$. The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on $F^{2^{-1}}$ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; refine ls structure factor coef Fsqd refine ls_matrix_type f11]] _refine_ls_weighting scheme calc _refine_ls_weighting_details 'calc w=1/[$s^2^{(Fo^2^)}+(0.0497P)^2^+0.1121P$] where $P = (Fo^2 + 2Fc^2) / 3'$ atom sites solution primary direct atom sites solution secondary difmap atom sites solution hydrogens geom refine ls hydrogen treatment riding _refine_ls_extinction method SHELXL _refine_ls_extinction_coef 0.0107(13)_refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' _refine_ls number reflns 2692 refine ls number parameters 192 refine ls number restraints \cap refine ls R factor all 0.0525 refine ls R factor gt 0.0381 _refine_ls_wR_factor_ref 0.1089 _refine_ls_wR_factor_gt 0.0957 _refine_ls_goodness_of_fit_ref 1.049 refine ls restrained S all 1.049 refine ls shift/su max 0.000 refine ls shift/su mean 0.000 loop _atom_site label _atom_site_type_symbol _atom_site_fract x _atom_site_fract y _atom_site_fract z atom site U iso or equiv atom site adp type _atom_site_occupancy _atom_site_symmetry multiplicity _atom_site_calc_flag _atom_site_refinement flags _atom_site_disorder assembly atom site disorder group S1 S 0.79454(6) -0.07238(4) 0.05162(6) 0.0500(2) Uani 1 1 d . . . S2 S 0.90371(6) 0.11975(4) 0.06448(6) 0.0506(2) Uani 1 1 d . . . C1 C 0.7481(2) -0.18018(13) 0.01899(19) 0.0430(5) Uani 1 1 d . . .

C2 C 0.5951(2) -0.19843(15) 0.0559(2) 0.0506(6) Uani 1 1 d . . . H2 H 0.5459 -0.2534 0.0465 0.061 Uiso 1 1 calc R . . C3 C 0.5228(3) -0.13050(14) 0.1066(2) 0.0511(6) Uani 1 1 d . . . H3 H 0.4197 -0.1348 0.1354 0.061 Uiso 1 1 calc R . . C4 C 0.6128(2) -0.05379(14) 0.1128(2) 0.0451(6) Uani 1 1 d . . . C5 C 0.5567(2) 0.02255(15) 0.1603(2) 0.0494(6) Uani 1 1 d . . . H5 H 0.4567 0.0143 0.1928 0.059 Uiso 1 1 calc R . . C6 C 0.6095(2) 0.10648(15) 0.1720(2) 0.0504(6) Uani 1 1 d . . . H6 H 0.5375 0.1410 0.2117 0.061 Uiso 1 1 calc R . . C7 C 0.7432(2) 0.15456(15) 0.1402(2) 0.0467(6) Uani 1 1 d . . . C8 C 0.7649(3) 0.24201(15) 0.1677(2) 0.0558(7) Uani 1 1 d . . . H8 H 0.6896 0.2741 0.2077 0.067 Uiso 1 1 calc R . . C9 C 0.9031(3) 0.27749(14) 0.1323(2) 0.0517(6) Uani 1 1 d . . . H9 H 0.9315 0.3361 0.1460 0.062 Uiso 1 1 calc R . . C10 C 0.9995(2) 0.22021(13) 0.07435(19) 0.0443(5) Uani 1 1 d . . . C11 C 1.1517(2) 0.23785(13) 0.03543(19) 0.0441(6) Uani 1 1 d . . C12 C 1.2152(2) 0.32742(14) 0.0575(2) 0.0450(5) Uani 1 1 d . C13 C 1.1763(3) 0.39434(15) -0.0158(2) 0.0593(7) Uani 1 1 d . . . H13 H 1.1083 0.3838 -0.0810 0.071 Uiso 1 1 calc R . . C14 C 1.2356(3) 0.47688(15) 0.0047(3) 0.0640(7) Uani 1 1 d . . . H14 H 1.2072 0.5217 -0.0472 0.077 Uiso 1 1 calc R . . C15 C 1.3333(3) 0.49557(15) 0.0971(2) 0.0540(6) Uani 1 1 d . . . C16 C 1.3713(3) 0.42884(16) 0.1707(2) 0.0633(7) Uani 1 1 d . . . H16 H 1.4389 0.4398 0.2359 0.076 Uiso 1 1 calc R . . C17 C 1.3128(3) 0.34617(16) 0.1515(2) 0.0598(7) Uani 1 1 d . . . H17 H 1.3404 0.3016 0.2041 0.072 Uiso 1 1 calc R . . C18 C 1.3974(3) 0.58638(16) 0.1163(3) 0.0726(9) Uani 1 1 d . . . H18A H 1.4958 0.5833 0.1659 0.087 Uiso 1 1 calc R . . H18B H 1.4264 0.6107 0.0428 0.087 Uiso 1 1 calc R . . C19 C 1.2826(3) 0.64566(17) 0.1682(3) 0.0761(9) Uani 1 1 d . . . H19A H 1.1861 0.6506 0.1185 0.114 Uiso 1 1 calc R . . H19B H 1.3315 0.7028 0.1786 0.114 Uiso 1 1 calc R . . H19C H 1.2547 0.6227 0.2417 0.114 Uiso 1 1 calc R . . loop _atom_site_aniso_label _atom_site_aniso U 11 atom site aniso U 22 atom site aniso U 33 atom site aniso U 23 atom site aniso U 13 atom site aniso U 12 sī 0.0413(3) 0.0411(4) 0.0687(5) -0.0103(3) 0.0140(3) -0.0118(2) S2 0.0435(3) 0.0415(4) 0.0683(5) -0.0117(3) 0.0163(3) -0.0117(2) C1 0.0439(11) 0.0372(12) 0.0479(14) -0.0003(10) 0.0028(10) -0.0110(9) C2 0.0477(12) 0.0459(13) 0.0588(16) 0.0046(12) 0.0076(11) -0.0160(10) C3 0.0421(12) 0.0514(14) 0.0610(16) 0.0055(12) 0.0124(11) -0.0112(10) C4 0.0391(11) 0.0492(13) 0.0476(14) 0.0001(11) 0.0063(10) -0.0072(10) C5 0.0402(11) 0.0547(15) 0.0547(15) -0.0005(12) 0.0145(10) -0.0054(10) C6 0.0424(12) 0.0571(15) 0.0530(15) -0.0082(12) 0.0136(11) -0.0003(10) C7 0.0422(12) 0.0486(13) 0.0498(15) -0.0079(11) 0.0067(10) -0.0025(10) C8 0.0501(13) 0.0500(14) 0.0682(18) -0.0142(13) 0.0115(12) -0.0004(11) C9 0.0558(13) 0.0391(13) 0.0603(16) -0.0092(12) 0.0031(12) -0.0060(10) C10 0.0453(12) 0.0387(12) 0.0485(14) -0.0032(10) -0.0015(10) -0.0056(9) C11 0.0463(12) 0.0361(12) 0.0495(15) 0.0004(10) -0.0009(11) -0.0114(9) $C12 \ 0.0459(12) \ 0.0362(12) \ 0.0531(15) \ -0.0009(11) \ 0.0050(11) \ -0.0083(10)$ C13 0.0643(15) 0.0447(14) 0.0674(18) 0.0020(13) -0.0117(14) -0.0112(12) C14 0.0679(15) 0.0395(14) 0.084(2) 0.0132(13) -0.0014(15) -0.0052(12)

```
C15 0.0467(12) 0.0382(13) 0.0784(19) -0.0103(13) 0.0148(13) -0.0103(10)
C16 0.0648(16) 0.0606(17) 0.0631(18) -0.0084(14) -0.0092(14) -
0.0213(13)
C17 0.0694(16) 0.0483(14) 0.0606(17) 0.0056(12) -0.0071(14) -0.0167(12)
C18 0.0669(16) 0.0457(15) 0.108(3) -0.0206(15) 0.0280(16) -0.0193(12)
C19 0.0711(17) 0.0535(16) 0.106(3) -0.0284(16) 0.0276(17) -0.0179(13)
_geom_special details
All esds (except the esd in the dihedral angle between two l.s.
planes)
are estimated using the full covariance matrix. The cell esds are
taken
into account individually in the estimation of esds in distances,
angles
and torsion angles; correlations between esds in cell parameters are
only
used when they are defined by crystal symmetry. An approximate
(isotropic)
treatment of cell esds is used for estimating esds involving l.s.
planes.
;
loop
 geom bond atom site label 1
_geom_bond_atom_site label 2
_geom_bond_distance
_geom_bond_site_symmetry 2
 geom bond publ flag
S1 C4 1.747(2) . ?
S1 C1 1.753(2) . ?
S2 C7 1.743(2) . ?
S2 C10 1.753(2) . ?
C1 C11 1.406(3) 3_755 ?
C1 C2 1.407(3) . ?
C2 C3 1.368(3) . ?
C2 H2 0.9500 . ?
C3 C4 1.408(3) . ?
C3 H3 0.9500 . ?
C4 C5 1.402(3) . ?
C5 C6 1.378(3) . ?
C5 H5 0.9500 . ?
C6 C7 1.414(3) . ?
C6 H6 0.9500 . ?
C7 C8 1.403(3) . ?
C8 C9 1.370(3) . ?
C8 H8 0.9500 . ?
C9 C10 1.404(3) . ?
C9 H9 0.9500 . ?
C10 C11 1.408(3) . ?
C11 C1 1.406(3) 3_755 ?
C11 C12 1.504(3) . ?
C12 C17 1.379(3) . ?
C12 C13 1.380(3) . ?
C13 C14 1.389(3) . ?
C13 H13 0.9500 . ?
C14 C15 1.365(3) . ?
C14 H14 0.9500 . ?
```

C15 C16 1.379(3) . ? C15 C18 1.518(3) . ? C16 C17 1.386(3) . ? C16 H16 0.9500 . ? C17 H17 0.9500 . ? C18 C19 1.487(3) . ? C18 H18A 0.9900 . ? C18 H18B 0.9900 . ? C19 H19A 0.9800 . ? C19 H19B 0.9800 . ? C19 H19C 0.9800 . ? loop _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site label 3 _geom_angle _geom_angle_site_symmetry 1 _geom_angle_site_symmetry_3 geom angle publ flag C4 S1 C1 93.39(10) . . ? C7 S2 C10 93.20(10) . . ? C11 C1 C2 126.4(2) 3 755 . ? C11 C1 S1 125.03(15) 3 755 . ? C2 C1 S1 108.60(17) . . ? C3 C2 C1 114.5(2) . . ? C3 C2 H2 122.8 . . ? C1 C2 H2 122.8 . . ? C2 C3 C4 115.0(2) . . ? C2 C3 H3 122.5 . . ? C4 C3 H3 122.5 . . ? C5 C4 C3 122.8(2) . . ? C5 C4 S1 128.67(16) . . ? C3 C4 S1 108.50(17) . . ? C6 C5 C4 136.3(2) . . ? C6 C5 H5 111.9 . . ? C4 C5 H5 111.9 . . ? C5 C6 C7 136.5(2) . . ? C5 C6 H6 111.7 . . ? С7 С6 Н6 111.7 . . ? C8 C7 C6 122.8(2) . . ? C8 C7 S2 108.88(16) . . ? C6 C7 S2 128.31(18) . . ? C9 C8 C7 114.7(2) . . ? C9 C8 H8 122.6 . . ? C7 C8 H8 122.6 . . ? C8 C9 C10 114.6(2) . . ? C8 C9 H9 122.7 . . ? С10 С9 Н9 122.7 . . ? C9 C10 C11 126.4(2) . . ? C9 C10 S2 108.61(16) . . ? C11 C10 S2 124.87(17) . . ? C1 C11 C10 127.02(19) 3 755 . ? C1 C11 C12 116.72(18) 3 755 . ? C10 C11 C12 116.23(19) . . ? C17 C12 C13 117.5(2) . . ? C17 C12 C11 121.7(2) . . ? C13 C12 C11 120.9(2) . . ?

```
C12 C13 C14 120.7(2) . . ?
C12 C13 H13 119.7 . . ?
C14 C13 H13 119.7 . . ?
C15 C14 C13 122.1(2) . . ?
C15 C14 H14 119.0 . . ?
C13 C14 H14 119.0 . . ?
C14 C15 C16 117.2(2) . . ?
C14 C15 C18 120.7(2) . . ?
C16 C15 C18 122.1(2) . . ?
C15 C16 C17 121.4(2) . .
                        ?
C15 C16 H16 119.3 . . ?
C17 C16 H16 119.3 . . ?
C12 C17 C16 121.2(2) . . ?
C12 C17 H17 119.4 . . ?
C16 C17 H17 119.4 . . ?
C19 C18 C15 113.7(2) . . ?
C19 C18 H18A 108.8 . . ?
C15 C18 H18A 108.8 . . ?
C19 C18 H18B 108.8 . . ?
C15 C18 H18B 108.8 . . ?
H18A C18 H18B 107.7 . . ?
C18 C19 H19A 109.5 . . ?
C18 C19 H19B 109.5 . . ?
H19A C19 H19B 109.5 . . ?
C18 C19 H19C 109.5 . . ?
H19A C19 H19C 109.5 . . ?
H19B C19 H19C 109.5 . . ?
loop
 _geom_torsion atom site label 1
 geom torsion atom site label 2
 geom torsion atom site label 3
 _geom_torsion_atom_site_label_4
 _geom_torsion
_geom_torsion_site_symmetry 1
_geom_torsion_site_symmetry_2
_geom_torsion_site_symmetry_3
 geom torsion site symmetry 4
 geom torsion publ flag
C4 S1 C1 C11 179.8(2) . . . 3 755 ?
C4 S1 C1 C2 0.00(18) . . . . ?
C11 C1 C2 C3 180.0(2) 3_755 . . . ?
S1 C1 C2 C3 -0.2(3) . . . ?
C1 C2 C3 C4 0.3(3) . . . ?
C2 C3 C4 C5 179.1(2) . . . ?
C2 C3 C4 S1 -0.3(3) . . . ?
C1 S1 C4 C5 -179.2(2) . . . ?
C1 S1 C4 C3 0.18(18) . . . ?
C3 C4 C5 C6 -175.0(3) . . . ?
S1 C4 C5 C6 4.3(4) . . . ?
C4 C5 C6 C7 1.0(5) . . . ?
C5 C6 C7 C8 -178.6(3) . . . ?
C5 C6 C7 S2 1.3(4) . . . ?
C10 S2 C7 C8 1.76(19) . . . ?
C10 S2 C7 C6 -178.1(2) . . . ?
C6 C7 C8 C9 178.5(2) . . . ?
S2 C7 C8 C9 -1.4(3) . . . ?
C7 C8 C9 C10 0.1(3) . . . ?
```

C8 C9 C10 C11 -175.6(2) . . . ? C8 C9 C10 S2 1.2(3) . . . ? C7 S2 C10 C9 -1.69(18) . . . ? C7 S2 C10 C11 175.2(2) . . . ? C9 C10 C11 C1 177.4(2) . . . 3 755 ? S2 C10 C11 C1 1.1(3) . . . 3 755 ? C9 C10 C11 C12 -0.8(3) . . . ? S2 C10 C11 C12 -177.07(16) . . . ? C1 C11 C12 C17 -84.2(3) 3_755 . . . ? C10 C11 C12 C17 94.2(3) . . . C1 C11 C12 C13 96.4(3) 3_755 . . . ? C10 C11 C12 C13 -85.2(3) . . . ? C17 C12 C13 C14 0.8(4) . . . ? C11 C12 C13 C14 -179.8(2) . . . ? C12 C13 C14 C15 -0.2(4) . . . ? C13 C14 C15 C16 -0.3(4) . . . ? C13 C14 C15 C18 179.4(2) . . . ? C14 C15 C16 C17 0.1(4) . . . ? C18 C15 C16 C17 -179.5(2) . . . ? C13 C12 C17 C16 -0.9(4) . . . ? C11 C12 C17 C16 179.7(2) . . . ? C15 C16 C17 C12 0.5(4) . . . ? C14 C15 C18 C19 81.4(3) . . . ? C16 C15 C18 C19 -99.0(3) . . . ? _diffrn_measured_fraction_theta_max 0.999 _diffrn_reflns_theta_full 25.00 _diffrn_measured_fraction theta full 0.999 _refine_diff_density_max 0.195 _refine_diff density min -0.197 refine diff density rms 0.039

CIF Files for 6b:

data gnu006 _audit_creation method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C80 H68 S8' _chemical_formula_weight 1285.82 loop _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real atom type scat dispersion imag atom type scat source 'C' 'C' 0.0181 0.0091 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'S' 'S' 0.3331 0.5567 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Orthorhombic' symmetry cell setting _symmetry_space_group_name_H-M 'P n a 21' loop symmetry equiv pos as xyz 'x, y, z' '-x, -y, z+1/2' '-x+1/2, y+1/2, z+1/2' 'x+1/2, -y+1/2, z' _cell length a 19.7591(3)cell length b 34.5783(4) _cell_length_c 9.5257(2) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 6508.30(18) _cell_formula units Z 4 _cell_measurement temperature 150(2) _cell_measurement_reflns used 17011 cell_measurement_theta_min3.3942cell_measurement_theta_max72.0977 _cell_measurement_theta max _exptl_crystal_description block _exptl_crystal_colour blue _exptl_crystal size max 0.33 exptl crystal size mid 0.26 exptl crystal size min 0.21

_exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.312 _exptl_crystal_density method 'not measured' _exptl_crystal_F_000 2704 _exptl_absorpt coefficient mu 2.888 exptl absorpt correction T min 0.4491 exptl absorpt correction T max 0.5822 exptl absorpt correction type 'multi-scan' _exptl_absorpt_process_details CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.31.7 (release 18-10-2006 CrysAlis171 .NET) (compiled Oct 18 2006,16:28:17) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. ; _diffrn_ambient temperature 150(2)_diffrn_radiation_wavelength 1.5418 _diffrn_radiation_type CuK\a 'Micro-Focus (Cu) X-ray Source' diffrn radiation source _diffrn_radiation monochromator graphite 'OXFORD DIFFRACTION SUPER NOVA' diffrn measurement device type _diffrn_measurement_method '\w/q-scan' _diffrn_detector_area_resol mean 15.9948 _diffrn_standards_number _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay % ? _diffrn_reflns number 27082 _diffrn_reflns av R equivalents 0.0229 _diffrn_reflns_av_sigmaI/netI 0.0182 diffrn reflns limit h min -19 diffrn_reflns_limit_h_max 19 _diffrn_reflns_limit_k_min -34 _diffrn_reflns_limit_k_max 34 _diffrn_reflns_limit_l_min -7 diffrn reflns limit l max 9 diffrn reflns theta min 3.40 diffrn reflns theta max 49.99 reflns number total 5655 reflns number gt 5407 _reflns_threshold_expression >2sigma(I) computing data collection 'CrysAlis CCD, Oxford Diffraction Ltd.,' computing cell refinement 'CrysAlis RED, Oxford Diffraction Ltd.,' computing data reduction 'CrysAlis RED, Oxford Diffraction Ltd., ' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Ortep3' 'Shelx97' computing publication material _refine_special_details

```
;
```

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative $F^{2^{-}}$. The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on $F^{2^{-1}}$ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; refine ls structure factor coef Fsqd refine ls_matrix_type f11]] _refine_ls_weighting scheme calc _refine_ls_weighting_details 'calc w=1/[$s^2^{(Fo^2^)}+(0.0595P)^2^+5.1330P$] where $P = (Fo^2 + 2Fc^2) / 3'$ atom sites solution primary direct atom sites solution secondary difmap atom sites solution hydrogens geom refine ls hydrogen treatment riding _refine_ls_extinction method SHELXL _refine_ls_extinction_coef 0.00021(3)_refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' refine ls abs structure Flack -0.01(2)refine ls_number_reflns 5655 refine_ls_number_parameters 802 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0407 0.0387 _refine_ls_R_factor_gt refine ls wR factor ref 0.1048 refine ls wR factor gt 0.1022 refine ls goodness of fit ref 1.014 refine ls restrained S all 1.014 0.002 _refine_ls shift/su mean 0.000 loop atom site label atom site type symbol atom site fract x atom site fract y _atom_site_fract_z _atom_site_U_iso or equiv _atom_site_adp_type _atom_site_occupancy atom site symmetry multiplicity atom site calc flag atom site refinement flags atom site disorder assembly atom site disorder group

C1 C 0.4117(3) 1.30052(15) 0.0433(6) 0.0665(15) Uani 1 1 d . . . C2 C 0.4107(3) 1.34069(16) 0.0145(7) 0.0755(16) Uani 1 1 d . . . H2 H 0.4005 1.3507 -0.0759 0.091 Uiso 1 1 calc R . . C3 C 0.4254(3) 1.36379(15) 0.1248(7) 0.0679(16) Uani 1 1 d . . . H3 H 0.4262 1.3912 0.1175 0.082 Uiso 1 1 calc R . . C4 C 0.4393(2) 1.34445(14) 0.2500(6) 0.0558(14) Uani 1 1 d . . . C5 C 0.4579(3) 1.36157(13) 0.3783(7) 0.0583(14) Uani 1 1 d . . . C6 C 0.4542(2) 1.40487(12) 0.3828(6) 0.0531(13) Uani 1 1 d . . C7 C 0.3934(3) 1.42379(16) 0.3699(7) 0.0749(17) Uani 1 1 d . . . H7 H 0.3530 1.4092 0.3576 0.090 Uiso 1 1 calc R . . C8 C 0.3901(3) 1.46364(17) 0.3745(8) 0.089(2) Uani 1 1 d . . . H8 H 0.3475 1.4760 0.3636 0.106 Uiso 1 1 calc R . . C9 C 0.4463(3) 1.48569(15) 0.3941(7) 0.0820(19) Uani 1 1 d . . . C10 C 0.5075(3) 1.46714(14) 0.4020(7) 0.0792(19) Uani 1 1 d . . . H10 H 0.5479 1.4819 0.4098 0.095 Uiso 1 1 calc R . . C11 C 0.5114(3) 1.42708(13) 0.3985(7) 0.0665(16) Uani 1 1 d . H11 H 0.5543 1.4148 0.4071 0.080 Uiso 1 1 calc R . . C12 C 0.4416(5) 1.53021(17) 0.3910(10) 0.146(4) Uani 1 1 d . . . H12 H 0.3975 1.5322 0.4420 0.175 Uiso 1 1 calc R . . C13 C 0.4221(5) 1.54745(19) 0.2778(11) 0.153(4) Uani 1 1 d . . . H13A H 0.4603 1.5496 0.2127 0.229 Uiso 1 1 calc R . . H13B H 0.4054 1.5734 0.3011 0.229 Uiso 1 1 calc R . . H13C H 0.3857 1.5325 0.2337 0.229 Uiso 1 1 calc R . C14 C 0.4823(4) 1.54837(16) 0.4975(9) 0.129(3) Uani 1 1 d . . . H14A H 0.4676 1.5752 0.5103 0.193 Uiso 1 1 calc R . . H14B H 0.5299 1.5480 0.4687 0.193 Uiso 1 1 calc R . H14C H 0.4773 1.5343 0.5862 0.193 Uiso 1 1 calc R . . C15 C 0.4793(2) 1.34276(13) 0.5008(7) 0.0566(14) Uani 1 1 d . . . C16 C 0.4953(2) 1.35963(15) 0.6286(6) 0.0626(16) Uani 1 1 d . . . H16 H 0.4908 1.3866 0.6453 0.075 Uiso 1 1 calc R . . C17 C 0.5180(3) 1.33457(15) 0.7281(7) 0.0678(16) Uani 1 1 d . . . H17 H 0.5322 1.3430 0.8184 0.081 Uiso 1 1 calc R . . C18 C 0.5192(3) 1.29537(14) 0.6883(6) 0.0616(14) Uani 1 1 d . . C19 C 0.5394(3) 1.26561(15) 0.7765(7) 0.0711(16) Uani 1 1 d . . H19 H 0.5568 1.2748 0.8631 0.085 Uiso 1 1 calc R . . C20 C 0.5403(3) 1.22537(15) 0.7679(7) 0.0763(17) Uani 1 1 d . . . H20 H 0.5583 1.2141 0.8509 0.092 Uiso 1 1 calc R . . C21 C 0.5220(3) 1.19742(15) 0.6716(7) 0.0709(17) Uani 1 1 d . . . C22 C 0.5218(3) 1.15763(15) 0.7033(8) 0.0779(17) Uani 1 1 d . . . H22 H 0.5351 1.1476 0.7920 0.094 Uiso 1 1 calc R . . C23 C 0.5005(3) 1.13436(16) 0.5929(9) 0.083(2) Uani 1 1 d . . . H23 H 0.4983 1.1070 0.6007 0.100 Uiso 1 1 calc R . . C24 C 0.4829(2) 1.15319(14) 0.4729(8) 0.0704(19) Uani 1 1 d . . . C25 C 0.4591(3) 1.13638(14) 0.3448(8) 0.0674(18) Uani 1 1 d . . . C26 C 0.4586(2) 1.09280(13) 0.3480(7) 0.0691(17) Uani 1 1 d . . . C27 C 0.5162(3) 1.07268(14) 0.3192(8) 0.087(2) Uani 1 1 d . . . H27 H 0.5559 1.0863 0.2926 0.104 Uiso 1 1 calc R . . C28 C 0.5179(3) 1.03307(16) 0.3279(9) 0.101(3) Uani 1 1 d . . . H28 H 0.5590 1.0200 0.3080 0.121 Uiso 1 1 calc R . . C29 C 0.4613(3) 1.01146(14) 0.3649(8) 0.0826(19) Uani 1 1 d . . . C30 C 0.4030(3) 1.03189(15) 0.3862(8) 0.088(2) Uani 1 1 d . . . H30 H 0.3626 1.0183 0.4086 0.106 Uiso 1 1 calc R . . C31 C 0.4010(3) 1.07228(15) 0.3758(7) 0.083(2) Uani 1 1 d . . . H31 H 0.3593 1.0855 0.3883 0.099 Uiso 1 1 calc R . . C32 C 0.4662(4) 0.96735(16) 0.3785(13) 0.149(4) Uani 1 1 d . . . H32 H 0.4444 0.9634 0.2848 0.179 Uiso 1 1 calc R . . C33 C 0.4107(4) 0.94872(19) 0.4499(10) 0.142(4) Uani 1 1 d . . . H33A H 0.4114 0.9559 0.5494 0.213 Uiso 1 1 calc R . .

H33B H 0.4153 0.9206 0.4411 0.213 Uiso 1 1 calc R . . H33C H 0.3679 0.9570 0.4078 0.213 Uiso 1 1 calc R . . C34 C 0.5202(4) 0.94961(17) 0.3394(15) 0.199(7) Uani 1 1 d . . . H34A H 0.5138 0.9217 0.3499 0.299 Uiso 1 1 calc R . . H34B H 0.5583 0.9580 0.3978 0.299 Uiso 1 1 calc R . . H34C H 0.5297 0.9557 0.2409 0.299 Uiso 1 1 calc R . . C35 C 0.4376(3) 1.15493(15) 0.2257(8) 0.0693(17) Uani 1 1 d . . . C36 C 0.4156(3) 1.13797(18) 0.0988(8) 0.0818(19) Uani 1 1 d . . . H36 H 0.4132 1.1108 0.0860 0.098 Uiso 1 1 calc R . . C37 C 0.3984(3) 1.16330(18) -0.0032(9) 0.094(2) Uani 1 1 d . . . H37 H 0.3832 1.1551 -0.0930 0.113 Uiso 1 1 calc R . . C38 C 0.4044(3) 1.20230(16) 0.0316(7) 0.0756(18) Uani 1 1 d . . . C39 C 0.3915(3) 1.23247(18) -0.0602(7) 0.0842(19) Uani 1 1 d . . . H39 H 0.3765 1.2233 -0.1488 0.101 Uiso 1 1 calc R . . C40 C 0.3947(3) 1.27228(16) -0.0576(7) 0.0788(18) Uani 1 1 d . . . H40 H 0.3825 1.2834 -0.1451 0.095 Uiso 1 1 calc R . . C41 C 0.1942(3) 1.51187(16) 0.4628(7) 0.0731(18) Uani 1 1 d . . . C42 C 0.1967(3) 1.55164(18) 0.4929(8) 0.087(2) Uani 1 1 d . . . H42 H 0.1865 1.5616 0.5834 0.104 Uiso 1 1 calc R . . C43 C 0.2146(3) 1.57499(18) 0.3832(8) 0.082(2) Uani 1 1 d . . . H43 H 0.2176 1.6023 0.3912 0.098 Uiso 1 1 calc R . . C44 C 0.2282(3) 1.55542(15) 0.2591(8) 0.0669(16) Uani 1 1 d . . . C45 C 0.2493(2) 1.57154(14) 0.1319(8) 0.0655(17) Uani 1 1 d . . . C46 C 0.2499(3) 1.61500(14) 0.1191(7) 0.0690(17) Uani 1 1 d . . . C47 C 0.1886(3) 1.63523(15) 0.1210(7) 0.0795(19) Uani 1 1 d . . H47 H 0.1470 1.6219 0.1342 0.095 Uiso 1 1 calc R . . C48 C 0.1895(3) 1.67572(16) 0.1030(8) 0.094(2) Uani 1 1 d . . . H48 H 0.1475 1.6891 0.1029 0.112 Uiso 1 1 calc R . . C49 C 0.2473(3) 1.69651(16) 0.0857(8) 0.095(2) Uani 1 1 d . . . C50 C 0.3056(3) 1.67570(15) 0.0881(9) 0.099(2) Uani 1 1 d . . . H50 H 0.3472 1.6892 0.0775 0.119 Uiso 1 1 calc R . . C51 C 0.3078(3) 1.63626(14) 0.1048(8) 0.089(2) Uani 1 1 d . . . H51 H 0.3504 1.6235 0.1065 0.106 Uiso 1 1 calc R . . C52 C 0.2466(5) 1.74004(17) 0.0614(11) 0.147(4) Uani 1 1 d . . H52 H 0.2820 1.7412 -0.0135 0.176 Uiso 1 1 calc R . . C53 C 0.1958(4) 1.7558(2) -0.0107(11) 0.148(4) Uani 1 1 d . . . H53A H 0.2035 1.7837 -0.0203 0.222 Uiso 1 1 calc R . . H53B H 0.1531 1.7514 0.0392 0.222 Uiso 1 1 calc R . . H53C H 0.1934 1.7440 -0.1041 0.222 Uiso 1 1 calc R . . C54 C 0.2829(4) 1.76015(17) 0.1692(8) 0.109(3) Uani 1 1 d . . . H54A H 0.2558 1.7605 0.2554 0.163 Uiso 1 1 calc R . . H54B H 0.2917 1.7867 0.1389 0.163 Uiso 1 1 calc R . H54C H 0.3259 1.7470 0.1872 0.163 Uiso 1 1 calc R . . C55 C 0.2725(2) 1.55138(13) 0.0116(8) 0.0630(15) Uani 1 1 d . . . C56 C 0.2922(3) 1.56755(15) -0.1171(8) 0.0687(17) Uani 1 1 d . . . H56 H 0.2904 1.5946 -0.1343 0.082 Uiso 1 1 calc R . . C57 C 0.3143(2) 1.54149(14) -0.2175(8) 0.0745(17) Uani 1 1 d . . . H57 H 0.3307 1.5491 -0.3071 0.089 Uiso 1 1 calc R . . C59 C 0.3286(3) 1.47185(14) -0.2633(7) 0.0712(16) Uani 1 1 d . . H59 H 0.3522 1.4805 -0.3443 0.085 Uiso 1 1 calc R . . C60 C 0.3207(3) 1.43220(14) -0.2615(7) 0.0703(16) Uani 1 1 d . . . H60 H 0.3409 1.4204 -0.3411 0.084 Uiso 1 1 calc R . . C61 C 0.2904(3) 1.40482(14) -0.1724(6) 0.0641(15) Uani 1 1 d . . . C62 C 0.2769(3) 1.36657(14) -0.2123(7) 0.0740(16) Uani 1 1 d . . . H62 H 0.2883 1.3565 -0.3020 0.089 Uiso 1 1 calc R . . C63 C 0.2458(3) 1.34497(14) -0.1098(7) 0.0685(16) Uani 1 1 d . . . H63 H 0.2333 1.3188 -0.1244 0.082 Uiso 1 1 calc R . . C64 C 0.2339(2) 1.36377(13) 0.0158(7) 0.0573(14) Uani 1 1 d . . .

C65 C 0.2056(2) 1.34783(14) 0.1393(6) 0.0547(14) Uani 1 1 d . . . C66 C 0.1885(2) 1.30548(14) 0.1329(6) 0.0549(13) Uani 1 1 d . . . C67 C 0.1227(3) 1.29297(15) 0.1363(7) 0.0767(18) Uani 1 1 d . . . H67 H 0.0871 1.3113 0.1432 0.092 Uiso 1 1 calc R . . C68 C 0.1075(3) 1.25418(16) 0.1297(7) 0.087(2) Uani 1 1 d . . . H68 H 0.0614 1.2464 0.1331 0.104 Uiso 1 1 calc R . . C69 C 0.1556(4) 1.22688(16) 0.1186(7) 0.0797(19) Uani 1 1 d . . . C70 C 0.2224(4) 1.23880(17) 0.1195(9) 0.101(2) Uani 1 1 d . . H70 H 0.2577 1.2202 0.1154 0.121 Uiso 1 1 calc R . . C71 C 0.2383(3) 1.27803(15) 0.1265(9) 0.089(2) Uani 1 1 d . . . H71 H 0.2844 1.2858 0.1269 0.107 Uiso 1 1 calc R . . C72 C 0.1366(4) 1.18362(17) 0.1060(8) 0.111(3) Uani 1 1 d . . . H72 H 0.0891 1.1839 0.0701 0.133 Uiso 1 1 calc R . . C73 C 0.1323(5) 1.16501(17) 0.2328(10) 0.149(4) Uani 1 1 d . . . H73A H 0.1778 1.1611 0.2710 0.224 Uiso 1 1 calc R . . H73B H 0.1102 1.1399 0.2199 0.224 Uiso 1 1 calc R . . H73C H 0.1057 1.1807 0.2982 0.224 Uiso 1 1 calc R . C74 C 0.1765(3) 1.16332(17) -0.0086(8) 0.103(2) Uani 1 1 d . . . H74A H 0.1584 1.1372 -0.0225 0.155 Uiso 1 1 calc R . . H74B H 0.2242 1.1617 0.0190 0.155 Uiso 1 1 calc R . . H74C H 0.1727 1.1780 -0.0963 0.155 Uiso 1 1 calc R . . C75 C 0.1943(2) 1.36676(13) 0.2654(6) 0.0545(14) Uani 1 1 d . . . C76 C 0.1731(3) 1.34966(15) 0.3929(6) 0.0613(14) Uani 1 1 d . . . H76 H 0.1645 1.3228 0.4020 0.074 Uiso 1 1 calc R . . C77 C 0.1662(3) 1.37503(16) 0.5017(7) 0.0736(15) Uani 1 1 d . . . H77 H 0.1534 1.3671 0.5934 0.088 Uiso 1 1 calc R . . C78 C 0.1796(2) 1.41384(15) 0.4675(6) 0.0641(15) Uani 1 1 d . . . C79 C 0.1719(3) 1.44394(17) 0.5609(7) 0.0810(18) Uani 1 1 d . . . H79 H 0.1591 1.4347 0.6510 0.097 Uiso 1 1 calc R . . C80 C 0.1776(3) 1.48377(18) 0.5604(7) 0.0793(17) Uani 1 1 d . . . H80 H 0.1676 1.4946 0.6497 0.095 Uiso 1 1 calc R . . C58 C 0.3101(2) 1.50276(13) -0.1744(7) 0.0653(17) Uani 1 1 d . . . S1 S 0.43283(6) 1.29472(3) 0.22015(16) 0.0638(4) Uani 1 1 d . . . S2 S 0.49193(7) 1.29266(3) 0.51427(17) 0.0644(4) Uani 1 1 d . . S3 S 0.49488(6) 1.20317(3) 0.49855(18) 0.0677(4) Uani 1 1 d . . . S4 S 0.43321(6) 1.20521(4) 0.20558(19) 0.0716(5) Uani 1 1 d . . . S5 S 0.21512(6) 1.50604(3) 0.28506(17) 0.0633(4) Uani 1 1 d . . . S6 S 0.28122(6) 1.50119(3) -0.00137(18) 0.0609(4) Uani 1 1 d . . . S7 S 0.26344(6) 1.41140(3) 0.00073(16) 0.0607(4) Uani 1 1 d . . . S8 S 0.20407(6) 1.41661(3) 0.29154(16) 0.0570(4) Uani 1 1 d . . . loop _atom_site_aniso label _atom_site_aniso_U_11 _atom_site_aniso_U_22 atom site aniso U 33 atom site aniso U 23 atom site aniso U 13 atom site aniso U 12 C1 0.058(3) 0.072(4) 0.069(4) -0.015(3) 0.014(3) -0.010(3) C2 0.079(4) 0.063(4) 0.084(5) 0.003(4) 0.005(4) -0.004(3) C3 0.075(4) 0.050(3) 0.078(5) -0.016(4) 0.020(3) -0.012(3) C4 0.054(3) 0.046(3) 0.067(4) -0.002(3) 0.015(3) -0.010(2) C5 0.049(3) 0.044(3) 0.082(4) -0.011(3) 0.015(3) -0.009(3)C6 0.048(3) 0.039(3) 0.073(4) -0.011(3) 0.008(3) 0.001(2) $C7 \ 0.060(4) \ 0.075(4) \ 0.089(5) \ -0.027(3) \ -0.006(3) \ 0.009(3)$ $C8 \ 0.086(4) \ 0.074(4) \ 0.107(5) \ -0.038(4) \ -0.030(4) \ 0.038(4)$ C9 0.113(5) 0.047(3) 0.086(5) -0.023(3) -0.036(4) 0.022(4)

C10	0.074(4)	0.039(3)	0.125(6)	0.001(3) -	-0.007(4)	-0.002(3)
C11	0.055(3)	0.040(3)	0.104(5)	-0.003(3)	0.008(3)	0.000(2)
C12	0.256(11)) 0.044(4)	0.137(7)	-0.017(4)	-0.111(8)	0.040(5)
C13	0.210(9)	0.067(4)	0.181(10)	0.054(6)	-0.102(8)	-0.059(5)
C14	0 174(7)	0 052(4)	0 160 (8)	-0 026(5)	-0 073(7)	0 014(4)
C15	0.055(3)	0.039(3)	0.100(0)	-0 010(3)	0.015(3)	-0 $010(2)$
C16	0.055(5)	0.039(3)	0.070(4)	0.010(3)	0.010(3)	0.010(2)
CIO	0.004(3)	0.039(3)	0.003(3)	-0.019(3)	0.009(3)	-0.003(2)
	0.071(3)	0.030(3)	0.082(4)	-0.016(3)	0.007(3)	-0.008(3)
CI8	0.066(3)	0.049(3)	0.069(4)	-0.010(3)	0.007(3)	-0.012(2)
CI9	0.083(4)	0.049(3)	0.081(4)	-0.006(3)	-0.003(3)	-0.005(3)
C20	0.080(4)	0.050(3)	0.098(5)	-0.001(3)	-0.002(4)	-0.003(3)
C21	0.064(3)	0.044(3)	0.105(5)	-0.013(3)	0.009(3)	-0.004(3)
C22	0.086(4)	0.047(3)	0.100(5)	-0.010(4)	0.009(4)	-0.003(3)
C23	0.073(4)	0.037(3)	0.141(7)	-0.013(4)	0.026(4)	-0.004(3)
C24	0.046(3)	0.033(3)	0.131(6)	-0.006(4)	0.021(4)	0.000(2)
C25	0.041(3)	0.047(3)	0.114(6)	-0.036(4)	0.020(3)	-0.016(3)
C26	0.047(3)	0.047(3)	0.113(5)	-0.031(3)	0.019(3)	-0.009(3)
C27	0.054(3)	0.050(3)	0.155(7)	-0.001(4)	0.033(4)	-0.007(3)
C28	0.072(4)	0.053(4)	0.177(8)	-0.001(4)	0.037(5)	0.007(3)
C29	0.075(4)	0.049(3)	0.124(6)	-0.016(4)	0.040(4)	-0.004(3)
C30	0.074(4)	0.057(4)	0.134(6)	-0.037(4)	0.051(4)	-0.027(3)
C31	0.053(3)	0.058(3)	0.137(6)	-0.042(4)	0.037(4)	-0.014(3)
C32	0.124(6)	0.038(3)	0.286(12)	0.011(5)	0.096(7)	-0.007(4)
C33	0 151(7)	0 081(5)	0 193(10)	0 041(5)	0 087(7)	0 012(5)
C34	0.134(7)	0.037(3)	0.43(2) =	-0 002(7) (116(10)	0.012(3)
C35	0.134(7)	0.037(3)	0.43(2)	-0 025(4)	0 022(3)	-0 011(3)
C36	0.000(0)	0.040(3)	0.110(5)	-0.029(4)	0.022(3)	-0.029(3)
C30	0.005(4)	0.001(4)	0.102(3)	-0.039(4)	0.017(4)	-0.029(3)
020	0.113(3)	0.072(4)	0.094(6)	-0.039(3)	0.010(3)	-0.031(4)
020	0.072(4)	0.063(4)	0.091(5)	-0.038(4)	0.012(3)	-0.020(3)
C39	0.094(4)	0.072(4)	0.08/(5)	-0.02/(4)	0.004(4)	-0.024(3)
C40	0.079(4)	0.0/3(4)	0.084(5)	-0.027(3)	0.011(3)	-0.016(3)
C41	0.0/5(4)	0.061(4)	0.084(5)	-0.034(4)	-0.018(3)	0.023(3)
C42	0.107(5)	0.073(4)	0.080(5)	-0.031(4)	-0.028(4)	0.028(3)
C43	0.087(4)	0.056(4)	0.102(6)	-0.045(4)	-0.026(4)	0.028(3)
C44	0.059(3)	0.046(3)	0.095(5)	-0.021(4)	-0.015(3)	0.013(3)
C45	0.048(3)	0.036(3)	0.112(5)	-0.029(4)	-0.029(3)	0.015(2)
C46	0.065(3)	0.047(3)	0.095(5)	-0.023(3)	-0.035(3)	0.010(3)
C47	0.067(3)	0.057(4)	0.114(5)	-0.033(4)	-0.035(4)	0.020(3)
C48	0.097(5)	0.061(4)	0.123(6)	-0.041(4)	-0.063(4)	0.044(4)
C49	0.101(5)	0.045(3)	0.139(7)	-0.022(4)	-0.073(5)	0.007(4)
C50	0.098(5)	0.041(3)	0.159(7)	-0.011(4)	-0.065(5)	0.002(3)
C51	0.072(4)	0.037(3)	0.156(7)	-0.009(4)	-0.053(4)	0.000(3)
C52	0.202(9)	0.040(3)	0.198(10)	-0.030(5)	-0.124(8	3) 0.033(4)
C53	0.137(6)	0.094(5)	0.214(11)	0.083(6)	-0.107(7)	-0.046(5)
C54	0.162(7)	0.044(3)	0.120(7)	-0.024(4)	-0.045(5)	0.011(4)
C55	0.047(3)	0.038(3)	0.104(5)	-0.003(4)	-0.017(3)	-0.002(2)
C56	0.053(3)	0.039(3)	0.114(6)	-0.017(4)	-0.011(3)	-0.001(3)
C57	0.066(3)	0.050(3)	0.107(5)	0.001(4) -	-0.004(4)	-0.008(3)
C59	0.081(4)	0.048(3)	0.084(5)	0,000(3)	0.015(3) -	-0.001(3)
C60	0.085(4)	0.052(3)	0.074(4)	-0.007(3)	0.012(3)	-0.001(3)
C61	0.077(3)	0.048(3)	0.067(4)	-0.006(3)	0.011(3)	0.001(3)
C 6 7	0 106(4)	0 040(3)	0 077(4)	-0 014(3)	0 0 0 0 (4)	-0 005(3)
C63	0.100(4)	0 033(3)	0.079(4)	-0 $0.01 - (3)$	0.006(3)	-0 008(3)
CEN	0 058(3)	0.036(3)	0 078(1)	-0 010(3)	-0 001(3)	-0 0.01(2)
C 6 5	0.013(3)	0.030(3)	0.075(4)	-0 $010(3)$	0.001(3)	-0 $0.001(2)$
COD	0.043(3)	0.040(3)	0.073(4)	0.010(3)	0.004(3)	0.002(2)
000	0.021(3)	0.04/(3)	0.00/(4)		0.004(3)	-0.000(2)
001	0.003(3)	0.004(4)	0.116(0)	-0.032(3)	0.013(3)	-0.013(3)
COS	$\cup . \cup / 8 (4)$	U.U06(4)	Λ.ΤΤΡ(Ρ)	-0.035(4)	∪.∪4∠(4)	-0.023(3)

C69 0.112(5) 0.052(3) 0.075(4) -0.009(3) 0.043(4) -0.038(4) C70 0.101(5) 0.045(4) 0.156(7) -0.005(4) 0.029(5) 0.009(3) C71 0.070(4) 0.048(4) 0.149(7) -0.003(4) 0.026(4) -0.002(3) C72 0.185(8) 0.056(4) 0.091(5) -0.020(4) 0.058(5) -0.034(4) C73 0.236(10) 0.051(4) 0.161(8) 0.040(5) 0.099(8) 0.023(5) C74 0.141(6) 0.065(4) 0.104(6) -0.025(4) 0.050(5) -0.010(4) $C75 \ 0.036(3) \ 0.045(3) \ 0.083(4) \ -0.007(3) \ -0.007(3) \ 0.002(2)$ C76 0.055(3) 0.056(3) 0.072(4) 0.000(3) 0.002(3) -0.002(3) C77 0.070(4) 0.077(4) 0.074(4) -0.004(4) -0.001(3) 0.002(3) C78 0.062(3) 0.067(4) 0.063(4) -0.011(3) 0.002(3) 0.007(3) $C79 \ 0.094(4) \ 0.068(4) \ 0.080(5) \ -0.020(4) \ 0.005(3) \ 0.015(3)$ C80 0.100(5) 0.075(4) 0.063(4) -0.014(4) -0.001(3) 0.018(3) $C58 \ 0.052(3) \ 0.042(3) \ 0.102(5) \ -0.007(3) \ 0.008(3) \ -0.003(2)$ S1 0.0641(8) 0.0462(7) 0.0811(10) -0.0149(7) 0.0152(8) -0.0142(6) S2 0.0767(9) 0.0387(7) 0.0777(10) -0.0104(7) 0.0127(8) -0.0093(6) S3 0.0524(7) 0.0411(7) 0.1096(13) -0.0206(8) 0.0024(8) -0.0059(5) S4 0.0559(8) 0.0483(8) 0.1106(13) -0.0293(8) 0.0063(8) -0.0097(6) S5 0.0552(8) 0.0478(7) 0.0868(10) -0.0224(8) -0.0047(8) 0.0085(5) S6 0.0588(8) 0.0368(6) 0.0873(10) -0.0140(7) -0.0011(8) 0.0014(5) S7 0.0685(8) 0.0384(6) 0.0752(9) -0.0110(7) 0.0085(8) -0.0023(6) S8 0.0488(7) 0.0475(7) 0.0748(9) -0.0136(7) 0.0041(7) 0.0032(5) _geom_special details All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop geom bond atom site label 1 geom bond atom site label 2 _geom_bond_distance _geom_bond_site_symmetry_2 geom bond publ flag C1 C40 1.410(7) . ? C1 C2 1.416(7) . ? C1 S1 1.748(6) . ? C2 C3 1.351(8) . ? C2 H2 0.9500 . ? C3 C4 1.395(8) . ? C3 H3 0.9500 . ? C4 C5 1.407(8) . ? C4 S1 1.748(5) . ? C5 C15 1.401(8) . ? C5 C6 1.500(6) . ? C6 C7 1.374(7) . ? C6 C11 1.375(6) . ? C7 C8 1.380(7) . ?

C7		Η	7		0	•	9	5	0	0		•		?					
С8		С	9		1	•	3	6	0	(8)		•		?			
C8		Η	8		0		9	5	0	0				?					
С9		С	1	0		1		3	7	2	(8)				?		
С9		С	1	2		1		5	4	3	(8)				?		
С1	0		С	1	1		1		3	8	7	(7)				?	
C1	0		н	1	0		0		9	5	0	ò		Ĺ		?		-	
C1	1		н	1	1		0	Ī	9	5	0	0		Ī		。 ?			
C1	2		с С	1	イ ス		1	•	2	a	1	(1	• ∩	١	•			2
	2		С С	1 1	л		1 1	•	<u>л</u>	л		$\frac{1}{2}$	1 1	0	/ \		•		•
	2			⊥ 1	4 2		⊥ 1	•	4	4	0	(Ŧ	0)	S	•		÷
	2		п тт	⊥ 1	2	7	Ŧ	•	0	0	0	0	~	•		÷	2		
	3		H	1	3	A		0	•	9	8	0	0		•		:		
CI	3		H	1	3	В		0	•	9	8	0	0		•		?		
C1	3		Η	1	3	С		0	•	9	8	0	0		•		?		
С1	4		Η	1	4	A		0	•	9	8	0	0		•		?		
С1	4		Η	1	4	В		0	•	9	8	0	0		•		?		
С1	4		Η	1	4	С		0	•	9	8	0	0		•		?		
С1	5		С	1	6		1	•	3	8	6	(7)		•		?	
С1	5		S	2		1		7	5	5	(5)		•		?		
C1	6		С	1	7		1		3	6	1	(8)				?	
С1	6		Η	1	6		0		9	5	0	0				?			
С1	7		С	1	8		1		4	0	8	(7)				?	
С1	7		Н	1	7		0		9	5	0	Ò				?			
C1	8		С	1	9		1	Ĩ	3	8	7	(7)		Ĩ		?	
C1	8		S	2	2	1	-	•	Δ	5	, (6	Ś	'		•	?	•	
	a		С С	2	\cap	-	• 1	'	ч С	a	\ Л	7	י ר	١	•		·	2	
	0			2 1	0			•	0	5		('	'		•		÷	
	9		П	1 2	9		1	•	3	ງ ດ	1	2	0	`		:		~	
	0		C	2	T		T	•	3	8	T	(8)		•		:	
C2	0		Н	2	0		0	•	9	5	0	0	_	•		?		_	
C2	1		С	2	2		1	·	4	0	9	(7)		•	_	?	
C2	1		S	3		1	•	7	4	5	(7)		•		?		
C2	2		С	2	3		1	•	3	9	0	(9)		•		?	
C2	2		Η	2	2		0	•	9	5	0	0		•		?			
C2	3		С	2	4		1	•	3	6	1	(9)		•		?	
C2	3		Η	2	3		0	•	9	5	0	0		•		?			
C2	4		С	2	5		1	•	4	3	1	(9)				?	
C2	4		S	3		1		7	6	1	(5)		•		?		
C2	5		С	3	5		1		3	7	1	(9)				?	
C2	5		С	2	6		1		5	0	7	(7)				?	
C2	6		С	2	7		1		3	6	2	(7)				?	
C2	6		С	3	1		1		3	6	7	(7)				?	
C2	7		С	2	8		1		3	7	2	(7)				?	
C2	7		Н	2	7		0		9	5	0	ò		<i>.</i>		?			
C2	8		С	2	9		1	Ĩ	3	9	0	(8)		Ĩ		?	
C2	8		н	2	8		0	•	9	5	0	ò	Č	<i>′</i>		? ?		•	
C2	q		л С	2	0		1	•	2 2	6	7	1	7	`		·		2	
C2	a		C C	2 2	2		1 1	•	5	2 2	, Л	(, 7) \		•		• ?	
C2	2			っ っ	2 1		⊥ 1	•	7	0	4		' 7)		•		: ~	
C3	0			с 2	⊥ ⊥		T	•	4	U	⊥ ⊥	(/)		•		:	
03	1		H	3	1		0	•	9	5	0	0		•		÷			
C3	1		Н	3	T		0	•	9	5	0	0	~	•		?		_	
C3	2		С	3	4		1	•	2	8	6	(9)		•		?	
C3	2		С	3	3		1	•	4	4	2	(9)		•		?	
C3	2		Η	3	2		1	•	0	0	0	0		•		?			
C3	3		Η	3	3	A		0	•	9	8	0	0		•		?		
C3	3		Η	3	3	В		0	•	9	8	0	0		•		?		
CЗ	3		Η	3	3	С		0	•	9	8	0	0		•		?		
CЗ	4		Η	3	4	A		0	•	9	8	0	0		•		?		
C3	4		Η	3	4	В		0		9	8	0	0				?		
C 3 4	H34C 0 9800 ?																		
-------	--	--																	
025	11340 0.9000 . :																		
035	(30 1.412(9) . :																		
C35	S4 1./51(6) . ?																		
C36	C37 1.352(9) . ?																		
C36	НЗ6 0.9500 . ?																		
C37	C38 1.394(7) . ?																		
C37	НЗ7 0.9500 . ?																		
C38	C39 1.385(8) . ?																		
C38	S4 1.755(7) . ?																		
C39	$C40 \ 1 \ 378 \ (8) \ ?$																		
C39	H39 0 9500 2																		
C10	HAO 0 9500 2																		
C40	(140 0.9500																		
	$C_{00} = 1.384(0)$. :																		
C41	(42 1.405(8) . ?																		
C41	S5 1.755(7) . ?																		
C42	C43 1.368(9) . ?																		
C42	H42 0.9500 . ?																		
C43	C44 1.388(9) . ?																		
C43	H43 0.9500 . ?																		
C44	C45 1.398(9) . ?																		
C44	S5 1.744(6) . ?																		
C45	C55 1.417(9) . ?																		
C45	C461.508(7) ?																		
C46	$C51 \ 1 \ 366(7) \ 2$																		
C46	$CA7 \ 1 \ A00(7) \ 2$																		
C40	$C_{47} = 1.400(7)$																		
C47	(40 1.410(0) . :																		
C4/	H4/ 0.9500 . ?																		
C48	(49 1.360 (9) . ?																		
C48	H48 0.9500 . ?																		
C49	C50 1.359(8) . ?																		
C49	C52 1.523(8) . ?																		
C50	C51 1.374(7) . ?																		
C50	н50 0.9500 . ?																		
C51	н51 0.9500 . ?																		
C52	C53 1.334(9) . ?																		
C52	C54 1.432(9) . ?																		
C52	н52 1.0000 . ?																		
C53	H53A 0.9800 . ?																		
C53	H53B 0 9800 ?																		
C53	H53C 0 9800 ?																		
C54	H542 0 9800 2																		
C54																			
C54	H54B 0.9800 . :																		
054	H54C 0.9800 . :																		
C55	C56 1.403(9) . ?																		
C55	S6 1./48(5) . ?																		
C56	C57 1.384(8) . ?																		
C56	н56 0.9500 . ?																		
C57	C58 1.403(7) . ?																		
C57	н57 0.9500 . ?																		
C59	C60 1.380(7) . ?																		
C59	C58 1.411(7) . ?																		
C59	н59 0.9500 ?																		
C60	C61 1.405(7) ?																		
CEO	H60 0.9500 ?																		
C 6 1	C62 1 401(7) 2																		
CEI	$CUZ \pm . \exists U \pm (1) + . :$																		
	D = 1 + 14 = 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10																		
062	1.3/5(8) ?																		
C62	н62 0.9500 . ?																		

C63 C64 C65 C65 C66 C67 C68 C69 C70 C72 C72 C72 C72 C73 C74 C74 C75 C76 C77 C77 C77 C77 C77 C77 C77 C75 C77 C78 C79 C79 C79 C79 C79 C79 C79 C79 C78 C79 C78 C79 C78 C79 C78	C64 1 H63 C C65 1 S7 1. C75 1 C66 1 C75 1 C67 1 C67 1 C67 1 C67 1 C67 1 C67 1 C67 1 C72 1 H70 C C72 1 H70 C C72 1 H70 C H71 C C73 1 H70 C H71 C C73 1 H73A H73B H73C H74A H74B H74C C76 1 S8 1. C77 1 H76 C C79 1 S8 1. C77 1 H76 C C79 1 S8 1. C77 1 H76 C C78 1 H77 C C79 1 H78 C C79 1 H79 C H79 C	382 382 414 753(3 386 376 383 547 394 372 372 372 372 365 3750 377 382 3747(382) 3747(382) 3747(382) 3747(382) 3747(382) 3747(382) 3747	(8) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (8) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (
loor 	D_ eom_ar eom_ar eom_ar eom_ar c1 C2 C1 S1 C2 C1 C2 C1 C3 C2 C1 C3 C1 C1 C3 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	ngle_a ngle_ ngle_ ngle_ ngle_ ngle_ 123 123 123 122. 125. 122. 122. 122. 126.	atom_ atom_ site_ site_ publ_ .0(6) .3(5) 3(6) 4 1(5) 5 3(5) 5(4)	site site symme flag ? ? ?	label_1 label_2 label_3 etry_1 etry_3 ? ?

C5 C4 S1 125.1(4) . . ? C15 C5 C4 127.4(4) . . ? C15 C5 C6 117.0(5) . . ? C4 C5 C6 115.6(5) . . ? C7 C6 C11 117.6(4) . . ? C7 C6 C5 121.0(4) . . ? C11 C6 C5 121.4(4) . . ? C6 C7 C8 120.9(5) . . ? C6 C7 H7 119.5 . . ? C8 C7 H7 119.5 . . ? C9 C8 C7 121.7(5) . . ? C9 C8 H8 119.2 . . ? C7 C8 H8 119.2 . . ? C8 C9 C10 117.8(5) . . ? C8 C9 C12 120.5(6) . . ? C10 C9 C12 121.4(7) . . ? C9 C10 C11 121.0(5) . . ? C9 C10 H10 119.5 . . ? C11 C10 H10 119.5 . . ? C6 C11 C10 121.0(5) . . ? C6 C11 H11 119.5 . . ? C10 C11 H11 119.5 . . ? C13 C12 C14 123.7(7) . . ? C13 C12 C9 119.7(7) . . ? C14 C12 C9 112.8(6) . . ? C13 C12 H12 96.5 . . ? C14 C12 H12 96.5 . . ? C9 C12 H12 96.5 . . ? C12 C13 H13A 109.5 . . ? C12 C13 H13B 109.5 . . ? H13A C13 H13B 109.5 . . ? C12 C13 H13C 109.5 . . ? H13A C13 H13C 109.5 . . ? H13B C13 H13C 109.5 . . ? C12 C14 H14A 109.5 . . ? C12 C14 H14B 109.5 . . ? H14A C14 H14B 109.5 . . ? C12 C14 H14C 109.5 . . ? H14A C14 H14C 109.5 . . ? H14B C14 H14C 109.5 . . ? C16 C15 C5 127.2(5) . . ? C16 C15 S2 108.6(4) . . ? C5 C15 S2 124.2(4) . . ? C17 C16 C15 114.8(5) . . ? C17 C16 H16 122.6 . . ? C15 C16 H16 122.6 . . ? C16 C17 C18 115.5(6) . . ? C16 C17 H17 122.2 . . ? C18 C17 H17 122.2 . . ? C19 C18 C17 123.8(6) . . ? C19 C18 S2 128.6(4) . . ? C17 C18 S2 107.6(4) . . ? C18 C19 C20 135.1(6) . . ? C18 C19 H19 112.4 . . ? C20 C19 H19 112.4 . . ? C21 C20 C19 137.3(6) . . ? C21 C20 H20 111.4 . . ? C19 C20 H20 111.4 . . ?

C20 C21 C22 122.8(6) . . ? C20 C21 S3 128.9(5) . . ? C22 C21 S3 108.3(5) . . ? C23 C22 C21 113.8(7) . . ? C23 C22 H22 123.1 . . ? C21 C22 H22 123.1 . . ? C24 C23 C22 115.9(5) . . ? C24 C23 H23 122.1 . . ? C22 C23 H23 122.1 . . ? C23 C24 C25 127.3(5) . . ? C23 C24 S3 108.6(5) . . ? C25 C24 S3 124.1(5) . . ? C35 C25 C24 128.1(5) . . ? C35 C25 C26 118.8(5) . . ? C24 C25 C26 113.0(6) . . ? C27 C26 C31 118.0(4) . . ? C27 C26 C25 120.1(4) . . ? C31 C26 C25 121.9(4) . . ? C26 C27 C28 121.2(5) . . ? C26 C27 H27 119.4 . . ? C28 C27 H27 119.4 . . ? C27 C28 C29 122.2(5) . . ? C27 C28 H28 118.9 . . ? C29 C28 H28 118.9 . . ? C30 C29 C28 116.0(5) . . ? C30 C29 C32 123.7(5) . . ? C28 C29 C32 120.3(6) . . ? C29 C30 C31 121.9(5) . . ? С29 С30 Н30 119.1 . . ? C31 C30 H30 119.1 . . ? C26 C31 C30 120.6(5) . . ? C26 C31 H31 119.7 . . ? C30 C31 H31 119.7 . . ? C34 C32 C33 123.7(6) . . ? C34 C32 C29 120.2(6) . . ? C33 C32 C29 115.8(6) . . ? C34 C32 H32 91.9 . . ? C33 C32 H32 91.9 . . ? С29 С32 Н32 91.9 . . ? C32 C33 H33A 109.5 . . ? C32 C33 H33B 109.5 . . ? H33A C33 H33B 109.5 . . ? C32 C33 H33C 109.5 . . ? H33A C33 H33C 109.5 . . ? H33B C33 H33C 109.5 . . ? C32 C34 H34A 109.5 . . ? C32 C34 H34B 109.5 . . ? H34A C34 H34B 109.5 . . ? C32 C34 H34C 109.5 . . ? H34A C34 H34C 109.5 . . ? H34B C34 H34C 109.5 . . ? C25 C35 C36 127.6(6) . . ? C25 C35 S4 124.8(5) . . ? C36 C35 S4 107.7(6) . . ? C37 C36 C35 115.1(6) . . ? C37 C36 H36 122.5 . . ? C35 C36 H36 122.5 . . ? C36 C37 C38 115.7(7) . . ?

C36 C37 H37 122.1 . . ? СЗ8 СЗ7 НЗ7 122.1 . . ? C39 C38 C37 124.2(6) . . ? C39 C38 S4 127.8(4) . . ? C37 C38 S4 108.0(6) . . ? C40 C39 C38 137.1(6) . . ? C40 C39 H39 111.5 . . ? C38 C39 H39 111.5 . . ? C39 C40 C1 135.6(7) . . ? C39 C40 H40 112.2 . . ? C1 C40 H40 112.2 . . ? C80 C41 C42 123.9(6) . . ? C80 C41 S5 128.5(4) . . ? C42 C41 S5 107.5(6) . . ? C43 C42 C41 115.5(6) . . ? C43 C42 H42 122.2 . . ? C41 C42 H42 122.2 . . ? C42 C43 C44 114.4(6) . . ? C42 C43 H43 122.8 . . ? C44 C43 H43 122.8 . . ? C43 C44 C45 127.0(6) . . ? C43 C44 S5 109.2(6) . . ? C45 C44 S5 123.9(4) . . ? C44 C45 C55 127.0(5) . . ? C44 C45 C46 118.0(5) . . ? C55 C45 C46 115.0(6) . . ? C51 C46 C47 117.2(5) . . ? C51 C46 C45 123.4(5) . . ? C47 C46 C45 119.4(5) . . ? C46 C47 C48 118.9(6) . . ? C46 C47 H47 120.5 . . ? C48 C47 H47 120.5 . . ? C49 C48 C47 123.4(5) . . ? C49 C48 H48 118.3 . . ? C47 C48 H48 118.3 . . ? C48 C49 C50 115.5(5) . . ? C48 C49 C52 122.3(6) . . ? C50 C49 C52 122.2(7) . . ? C49 C50 C51 123.6(6) . . ? C49 C50 H50 118.2 . . ? С51 С50 Н50 118.2 . . ? C46 C51 C50 121.3(5) . . ? C46 C51 H51 119.3 . . ? C50 C51 H51 119.3 . . ? C53 C52 C54 123.1(7) . . ? C53 C52 C49 119.3(7) . . ? C54 C52 C49 111.5(6) . . ? C53 C52 H52 98.2 . . ? C54 C52 H52 98.2 . . ? C49 C52 H52 98.2 . . ? C52 C53 H53A 109.5 . . ? C52 C53 H53B 109.5 . . ? H53A C53 H53B 109.5 . . ? C52 C53 H53C 109.5 . . ? H53A C53 H53C 109.5 . . ? H53B C53 H53C 109.5 . . ? C52 C54 H54A 109.5 . . ? C52 C54 H54B 109.5 . . ?

H54A C54 H54B 109.5 . . ? C52 C54 H54C 109.5 . . ? H54A C54 H54C 109.5 . . ? H54B C54 H54C 109.5 . . ? C56 C55 C45 126.9(5) . . ? C56 C55 S6 107.8(5) . . ? C45 C55 S6 125.3(5) . . ? C57 C56 C55 115.6(5) . . ? C57 C56 H56 122.2 . . ? С55 С56 Н56 122.2 . . ? C56 C57 C58 113.6(6) . . ? C56 C57 H57 123.2 . . ? C58 C57 H57 123.2 . . ? C60 C59 C58 135.7(6) . . ? C60 C59 H59 112.1 . . ? C58 C59 H59 112.1 . . ? C59 C60 C61 136.5(6) . . ? С59 С60 Н60 111.8 . . ? С61 С60 Н60 111.8 . . ? C62 C61 C60 123.6(5) . . ? C62 C61 S7 108.7(4) . . ? C60 C61 S7 127.7(4) . . ? C63 C62 C61 113.9(6) . . ? C63 C62 H62 123.0 . . ? C61 C62 H62 123.0 . . ? C62 C63 C64 115.8(5) . . ? C62 C63 H63 122.1 . . ? C64 C63 H63 122.1 . . ? C63 C64 C65 127.2(4) . . ? C63 C64 S7 108.3(4) . . ? C65 C64 S7 124.5(4) . . ? C75 C65 C64 126.9(5) . . ? C75 C65 C66 117.3(5) . . ? C64 C65 C66 115.8(5) . . ? C71 C66 C67 117.7(5) . . ? C71 C66 C65 121.0(4) . . ? C67 C66 C65 121.3(4) . . ? C66 C67 C68 120.9(5) . . ? С66 С67 Н67 119.6 . . ? С68 С67 Н67 119.6 . . ? C69 C68 C67 122.3(5) . . ? С69 С68 Н68 118.8 . . ? С67 С68 Н68 118.8 . . ? C68 C69 C70 117.7(5) . . ? C68 C69 C72 121.0(6) . . ? C70 C69 C72 121.3(6) . . ? C69 C70 C71 120.3(6) . . ? C69 C70 H70 119.8 . . ? С71 С70 Н70 119.8 . . ? C66 C71 C70 121.0(5) . . ? C66 C71 H71 119.5 . . ? С70 С71 Н71 119.5 . . ? C73 C72 C74 116.7(6) . . ? C73 C72 C69 113.6(6) . . ? C74 C72 C69 112.2(5) . . ? C73 C72 H72 104.2 . . ? C74 C72 H72 104.2 . . ? C69 C72 H72 104.2 . . ?

```
C72 C73 H73A 109.5 . . ?
C72 C73 H73B 109.5 . . ?
H73A C73 H73B 109.5 . . ?
С72 С73 Н73С 109.5 . . ?
H73A C73 H73C 109.5 . . ?
H73B C73 H73C 109.5 . . ?
C72 C74 H74A 109.5 . . ?
C72 C74 H74B 109.5 . . ?
H74A C74 H74B 109.5 . . ?
C72 C74 H74C 109.5 . . ?
H74A C74 H74C 109.5 . . ?
H74B C74 H74C 109.5 . . ?
C65 C75 C76 126.5(5) . . ?
C65 C75 S8 124.7(4) . . ?
C76 C75 S8 108.8(4) . . ?
C77 C76 C75 114.4(5) . . ?
С77 С76 Н76 122.8 . . ?
С75 С76 Н76 122.8 . . ?
C76 C77 C78 114.8(6) . . ?
C76 C77 H77 122.6 . . ?
С78 С77 Н77 122.6 . . ?
C79 C78 C77 123.5(6) . . ?
C79 C78 S8 127.5(5) . . ?
C77 C78 S8 109.1(4) . . ?
C78 C79 C80 137.9(6) . . ?
C78 C79 H79 111.0 . . ?
C80 C79 H79 111.0 . . ?
C79 C80 C41 136.2(6) . . ?
С79 С80 Н80 111.9 . . ?
С41 С80 Н80 111.9 . . ?
C57 C58 C59 122.2(6) . . ?
C57 C58 S6 109.0(4) . . ?
C59 C58 S6 128.9(4) . . ?
C4 S1 C1 93.5(3) . . ?
C18 S2 C15 93.5(3) . . ?
C21 S3 C24 93.5(3) . . ?
C35 S4 C38 93.6(3) . . ?
C44 S5 C41 93.4(3) . . ?
C58 S6 C55 93.9(3) . . ?
C61 S7 C64 93.2(3) . . ?
C78 S8 C75 93.0(3) . . ?
loop
 _geom_torsion_atom_site_label_1
_geom_torsion_atom_site_label_
 _geom_torsion_atom_site_label_3
 _geom_torsion_atom_site label 4
 geom torsion
 geom torsion site symmetry 1
 _geom_torsion_site_symmetry_2
_geom_torsion_site symmetry 3
_geom_torsion_site_symmetry_4
  geom torsion publ flag
C40 C1 C2 C3 177.2(5) . . . ?
S1 C1 C2 C3 -0.2(6) . . . ?
C1 C2 C3 C4 0.1(7) . . . ?
C2 C3 C4 C5 178.0(5) . . . ?
C2 C3 C4 S1 0.1(6) . . . ?
```

2

C3 C4 C5 C15 -172.3(5) . . . ? S1 C4 C5 C15 5.2(8) . . . ? C3 C4 C5 C6 7.5(7) . . . ? S1 C4 C5 C6 -174.9(3) . . . ? C15 C5 C6 C7 -115.2(6) . . . ? C4 C5 C6 C7 64.9(7) . . . ? C15 C5 C6 C11 65.4(7) . . . ? C4 C5 C6 C11 -114.5(6) . . . ? C11 C6 C7 C8 -0.8(9) ? C5 C6 C7 C8 179.8(6) . . . C6 C7 C8 C9 -1.1(11) . . . ? C7 C8 C9 C10 3.4(11) . . . ? C7 C8 C9 C12 176.8(7) . . . ? C8 C9 C10 C11 -3.9(11) . . . ? C12 C9 C10 C11 -177.1(7) ? C7 C6 C11 C10 0.4(9) . . . ? C5 C6 C11 C10 179.8(6) . . . ? C9 C10 C11 C6 2.0(10) . . . ? C8 C9 C12 C13 -62.0(14) . . . ? C10 C9 C12 C13 111.1(11) . . . ? C8 C9 C12 C14 139.3(9) . . . ? C10 C9 C12 C14 -47.7(12) . . . ? C4 C5 C15 C16 -177.6(5) . . . ? C6 C5 C15 C16 2.6(7) . . . ? C4 C5 C15 S2 3.9(8) . . . ? C6 C5 C15 S2 -176.0(3) . . . ? C5 C15 C16 C17 -176.9(5) . . . ? S2 C15 C16 C17 1.9(6) . . . ? C15 C16 C17 C18 -2.5(7) . . . ? C16 C17 C18 C19 -178.7(5) . . . ? C16 C17 C18 S2 1.8(6) . . . ? C17 C18 C19 C20 173.9(6) . . . ? S2 C18 C19 C20 -6.7(10) . . . ? C18 C19 C20 C21 -0.1(12) . . . ? C19 C20 C21 C22 -171.8(6) . . . ? C19 C20 C21 S3 7.2(10) . . . ? C20 C21 C22 C23 178.7(5) . . . ? S3 C21 C22 C23 -0.4(6) . . . ? C21 C22 C23 C24 -0.3(7) . . . ? C22 C23 C24 C25 -179.7(5) . . . ? C22 C23 C24 S3 0.8(6) . . . ? C23 C24 C25 C35 176.0(5) . . . ? S3 C24 C25 C35 -4.6(8) . . . ? C23 C24 C25 C26 -3.8(8) . . . S3 C24 C25 C26 175.6(3) . . . ? C35 C25 C26 C27 96.8(7) . . . ? C24 C25 C26 C27 -83.4(7) . . . ? C35 C25 C26 C31 -81.5(8) . . . ? C24 C25 C26 C31 98.3(7) . . . ? C31 C26 C27 C28 -4.7(11) . . . ? C25 C26 C27 C28 176.9(7) . . . ? C26 C27 C28 C29 0.6(12) . . . ? C27 C28 C29 C30 2.8(12) . . . ? C27 C28 C29 C32 -177.8(8) . . . ? C28 C29 C30 C31 -2.1(12) . . . ? C32 C29 C30 C31 178.5(8) . . . ? C27 C26 C31 C30 5.4(11) . . . ? C25 C26 C31 C30 -176.3(6) . . . ? C29 C30 C31 C26 -2.0(11) . . . ? C30 C29 C32 C34 171.0(11) . . . ? C28 C29 C32 C34 -8.4(17) . . . ? C30 C29 C32 C33 -15.4(14) . . . ? C28 C29 C32 C33 165.2(9) . . . ? C24 C25 C35 C36 178.4(5) . . . ? C26 C25 C35 C36 -1.8(9) . . . ? C24 C25 C35 S4 -1.2(8) . . . ? C26 C25 C35 S4 178.6(4) . . . ? C25 C35 C36 C37 -178.8(5) . . . ? S4 C35 C36 C37 0.9(7) . . . ? C35 C36 C37 C38 -0.3(8) . . . ? C36 C37 C38 C39 177.5(6) . . . ? C36 C37 C38 S4 -0.4(7) . . . ? C37 C38 C39 C40 -177.8(6) . . . ? S4 C38 C39 C40 -0.2(11) . . . ? C38 C39 C40 C1 -1.6(12) . . . ? C2 C1 C40 C39 179.5(6) . . . ? S1 C1 C40 C39 -3.7(10) . . . ? C80 C41 C42 C43 179.5(6) . . . ? S5 C41 C42 C43 -0.8(7) . . . ? C41 C42 C43 C44 -0.5(8) . . . ? C42 C43 C44 C45 -178.1(5) . . . ? C42 C43 C44 S5 1.6(7) . . . ? C43 C44 C45 C55 170.2(5) . . . ? S5 C44 C45 C55 -9.4(8) . . . ? C43 C44 C45 C46 -8.1(8) . . . ? S5 C44 C45 C46 172.3(4) C44 C45 C46 C51 113.4(7) . . . ? C55 C45 C46 C51 -65.1(8) . . . ? C44 C45 C46 C47 -66.9(7) . . . ? C55 C45 C46 C47 114.6(6) . . . ? C51 C46 C47 C48 2.4(9) . . . ? C45 C46 C47 C48 -177.4(6) . . . ? C46 C47 C48 C49 -1.0(10) . . . ? C47 C48 C49 C50 -0.5(11) . . . ? C47 C48 C49 C52 177.8(7) . . . ? C48 C49 C50 C51 0.7(12) . . . ? C52 C49 C50 C51 -177.6(8) . . . ? C47 C46 C51 C50 -2.2(10) . . . ? C45 C46 C51 C50 177.5(7) . . . ? C49 C50 C51 C46 0.7(12) . . . ? C48 C49 C52 C53 -33.4(15) . . . C50 C49 C52 C53 144.8(10) . . . ? C48 C49 C52 C54 120.1(9) . . . ? C50 C49 C52 C54 -61.7(12) . . . ? C44 C45 C55 C56 178.3(5) . . . ? C46 C45 C55 C56 -3.4(7) . . . ? C44 C45 C55 S6 -1.5(8) . . . ? C46 C45 C55 S6 176.9(4) . . . ? C45 C55 C56 C57 178.7(5) . . . ? S6 C55 C56 C57 -1.5(6) . . . C55 C56 C57 C58 2.8(7) . . . ? C58 C59 C60 C61 0.9(12) . . . ? C59 C60 C61 C62 165.2(7) . . . ? C59 C60 C61 S7 -14.7(10) . . . ? C60 C61 C62 C63 -178.6(5) . . . ? S7 C61 C62 C63 1.2(6) . . . ?

C61 C62 C63 C64 -1.1(8) . . . ? C62 C63 C64 C65 -176.9(5) . . . ? C62 C63 C64 S7 0.5(7) . . . ? C63 C64 C65 C75 179.4(5) . . . ? S7 C64 C65 C75 2.4(8) . . . ? C63 C64 C65 C66 1.7(8) . . . ? S7 C64 C65 C66 -175.4(4) . . . ? C75 C65 C66 C71 -108.8(6) . . . ? C64 C65 C66 C71 69.2(7) . . ? . . C75 C65 C66 C67 69.8(7) . . . ? C64 C65 C66 C67 -112.3(6) ? C71 C66 C67 C68 -1.7(9) . . . ? C65 C66 C67 C68 179.7(6) . . . ? C66 C67 C68 C69 -0.5(11) . . . ? C67 C68 C69 C70 2.5(11) . . . ? C67 C68 C69 C72 -177.7(6) . . . ? C68 C69 C70 C71 -2.3(11) . . . ? C72 C69 C70 C71 177.9(7) . . . ? C67 C66 C71 C70 1.9(10) . . . ? C65 C66 C71 C70 -179.5(7) . . . ? C69 C70 C71 C66 0.1(12) . . . ? C68 C69 C72 C73 -90.7(10) . . . ? C70 C69 C72 C73 89.0(9) . . . ? C68 C69 C72 C74 134.2(7) . . . ? C70 C69 C72 C74 -46.0(10) . . . ? C64 C65 C75 C76 -172.3(5) ? C66 C65 C75 C76 5.4(7) . . . ? C64 C65 C75 S8 7.7(7) . . . ? C66 C65 C75 S8 -174.5(3) . . . ? C65 C75 C76 C77 179.6(5) . . . ? S8 C75 C76 C77 -0.5(6) . . . ? C75 C76 C77 C78 1.6(7) . . . ? C76 C77 C78 C79 176.5(5) . . . ? C76 C77 C78 S8 -1.9(6) . . . ? C77 C78 C79 C80 -176.8(7) . . . ? S8 C78 C79 C80 1.3(11) . . . ? C78 C79 C80 C41 -0.2(13) . . . ? C42 C41 C80 C79 -179.3(6) . . . ? S5 C41 C80 C79 1.0(11) . . . ? C56 C57 C58 C59 178.3(5) . . . ? C56 C57 C58 S6 -2.7(6) . . . ? C60 C59 C58 C57 -167.6(6) . . . C60 C59 C58 S6 13.5(10) ? C3 C4 S1 C1 -0.2(4) C5 C4 S1 C1 -178.1(4) . . . ? C40 C1 S1 C4 -176.9(5) . . . ? C2 C1 S1 C4 0.2(4) . . . ? C19 C18 S2 C15 180.0(5) . . . ? C17 C18 S2 C15 -0.6(4) . . . ? C16 C15 S2 C18 -0.7(4) . . . ? C5 C15 S2 C18 178.1(4) . . . ? C20 C21 S3 C24 -178.3(5) . . . ? C22 C21 S3 C24 0.8(4) . . . ? C23 C24 S3 C21 -0.9(4) . . . ? C25 C24 S3 C21 179.6(4) . . . ? C25 C35 S4 C38 178.7(5) . . . ? C36 C35 S4 C38 -1.0(4) . . . ? C39 C38 S4 C35 -177.1(6) . . . ?

C37 C3	38 S4	C35	0.8(4) ?	
C43 C4	44 S5	C41	-1.7(4) ?	
C45 C4	44 S5	C41	177.9(5) ?	
C80 C4	41 S5	C44	-178.9(6) ?	
C42 C4	41 S5	C44	1.4(4) ?	
C57 C5	58 S6	C55	1.5(4) ?	
C59 C5	58 S6	C55	-179.5(5) ?	
C56 C5	55 S6	C58	-0.1(4) ?	
C45 C5	55 S6	C58	179.7(4) ?	
C62 C6	61 S7	C64	-0.8(4) ?	
C60 C6	61 S7	C64	179.1(5) ?	
C63 C6	64 S7	C61	0.2(4) ?	
C65 C6	64 S7	C61	177.7(5) ?	
C79 C7	78 S8	C75	-177.0(5) ?	
C77 C7	78 S8	C75	1.4(4) ?	
C65 C	75 S8	C78	179.4(4) ?	
C76 C7	75 S8	C78	-0.6(4) ?	
_diff1	rn_mea	asure	ed_fraction_theta_max	0.999
_diff1	rn_re	flns_	_theta_full	25.00
_diff1	rn_mea	asure	ed_fraction_theta_full	0.997
_refir	ne_di:	ff_de	ensity_max 0.299	
_refir	ne_di:	tf_de	ensity_min -0.211	
_refir	ne_di:	ff_de	ensity_rms 0.038	