Electronic Supplementary Information (ESI) for

Fabrication of Novel Cubic-Fe₃O₄ @rGO Composite via Colloid Electrostatic Self-assembly Process for Supercapacitors

Tiezhu Liu,^a Xudong Zhang,^a Baojun Li,^a Jie Ding,^a Yushan Liu,^{*a} Ge Li,^a Xianghe Meng,^a Qiang Cai^b and Jianmin Zhang^{*,a}

[†] College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P R China

[‡] Key Laboratory for Advanced Materials of Ministry of Education and College of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China

* Corresponding Author: liuyushan@zzu.edu.cn and zhjm@zzu.edu.cn

Experimental section

Synthesis of graphene oxide. Graphene oxide (GO) was synthesized using the following modified Hummer's method.^{S1} Graphite (2 g) was mixed with concentrated H_2SO_4 (69 mL) and the mixture was stirred for 30 min within an ice bath. KMnO₄ (8 g) was added very slowly into the dark suspension and the reaction mixture was stirred and sonicated for another 15 min under a reaction temperature of 20 °C. Then the ice bath was removed, and the mixture was stirred at 35 °C overnight. Distilled water was added to the pasty solution under magnetic stirring and the color of the solution turned to yellowish brown. After another 2 h of vigorous stirring, H_2O_2 (30*wt* %, 25 mL) was added and the color turned golden yellow immediately. The mixture was washed with HCl (5 %) for several times and then deionized water until the solution became acid free. The reaction mixture was filtered and dried under vacuum at 65 °C. The GO was obtained as a gray powder and used for the further experimental.

Fe(OH)₃ colloid solution was prepared using the method reported previously^{S2}. 200mL of deionized water was boiled for 2 min, and then 40mL of FeCl₃ solution (10% wt) was added dropwisely into the boiling water. After that, it needs to be heated for another 2 min to obtain the $Fe(OH)_3$ colloid solution. The $Fe(OH)_3$ colloid solution was cooled to room temperature for the further experiments.

Fig. S1 (a) TEM images of CFGC nanocomposite; (b)TEM images of Fe(OH)₃/graphene oxide nanocomposite; (c) SEM images of CFGC nanocomposite.

Figure S2. Magnetization curves for the CFGC.

Figure S3. (a) Nitrogen adsorption desorption isotherms at 77K. and (b) pore width distribution of CFGC.

b

Figure S4. (a) The cyclic voltammogram (CV) curves of Fe_3O_4 under the different scan rates of 5, 10, 20, 50, 80, and 100 mV s⁻¹; (b) The cyclic voltammogram (CV) curves of rGO under the different scan rates of 5, 10, 20, 50, 80, and 100 mV s⁻¹; (c) (i) rGO and (ii) Fe_3O_4 GCD curves at current density of 500 mA g⁻¹; (d) Specific capacitance of CFGC at different current densities.

References

[S1] W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339–1339.

[S2] Y. T. Chen, G. Fei, Y. Qiu, H. Hu, I. Kulaots, E. Walsh and R. H. Hurt, ACS Nano, 2013, 7, 3744-3753.