Supporting information:

Molecular level controlled fabrication of highly transparent conductive reduced graphene oxide/Ag nanowire hybrid film

⁵ Lifang Shi,^a Junhe Yang,^{*a} Tan Yang,^a Qiu Hanxun,^a Jing Li^a and Qingbin Zheng,^{*a,b}

^a School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. Tel.: 86-21-55274065 E-mail address: jhyang@usst.edu.cn (J. H. Yang)

¹⁰ ^b Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany. Tel.: 49-0351-4658486 E-mail address: zhengqingbin@ipfdd.de (Q. B. Zheng)

Fig. S1 Image of the Langmuir-Blodgett (L-B) trough, showing the transfer process of the UL-GO sheets onto the quartzes substrate.

Fig. S2 XRD spectrum of expanded graphite and 514 nm Raman spectrum of the graphene oxide. The peak around 13.5° indicates an interlayer spacing of 0.61 nm. And the peak around 27° indicate that the interlayer of the expanded graphite were not separated completely as graphene oxide¹. *D* peak and *D*+*G* peak, which refer to the defect of the graphene oxide are around ~1350 cm⁻¹ and ~2900 cm⁻¹. *G* peak and 2*D*+*G* peak referring to the crystallinity of the graphene oxide are around ~1580 cm⁻¹ and ~2700 cm⁻¹. The intensity ratio of I_D/I_G and I_{D+G}/I_{2D} often used for estimating the *sp*² domain size of graphite-based materials. As the ratio of I_D/I_G and I_{D+G}/I_{2D} are 0.82 and 1.39. It showed the graphene oxide was well oxygenated as the

ratio of is I_{D+G}/I_{2D} more sensitive².

5

10

Table S1 Relative percentages of carbon and assignations of UL-GO and rUL-GO.

Binding energy and	$Cg(sp^2)$	Cd(<i>sp</i> ³)	C-0	С=О	-0-C=0
assignation	~284.9eV	~285.6eV	~287.1eV	~288.1eV	~290.0eV
UL-GO	36.5%	21.5%	21.8%	13.6%	6.6%
rUL-GO	74.7%	13%	4.2%	4%	4.1%

Table S2 DC to optical conductivity ratio of current work and other works.

Method	Materials	SR (Ω /sq)	T (%)	σ_{DC}/σ_{Op}	Reference
L-B Spin-coating	GO / Ag NW	13	71.9	81	Current Work
	Graphene / Ag NW	64	94	93.7	Kholmanov et al. ³
CVD Doping	Graphene Ag NW/	202	96	45.3	Shin et al. ⁴
Spin-coating	GO CNT/	86	80	18.6	Gao et al. ⁵
	GO/ Ag NW- Au NP	26	83	74.2	Kholmanov et al. ⁶
Self-assembly	GO/ Ag NW	86	80	19.8	Tien et al. ⁷
Dip coating	GO/ Ag NW	150	86	16.0	Yun et al. ⁸
Transfer printing	GO/ Ag NW	27	80	59.1	Zhang et al.9
	GO/ Ag NW	210	97	58.5	Domingues et al. ¹⁰
Vacuum filtration	GO/ Ag NP	93	78	15.3	Tien et al. ¹¹

5 References

- Y. Si and E. T. Samulski, Chem. Mater., 2008, 20, 6792-6797. 1.
- 2.
- L. Shi, J. Yang, Z. Huang, J. Li, Z. Tang, Y. Li and Q. Zheng, *Applied Surface Science*, 2013, **276**, 437-446. I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, R. Piner, G. Shvets and R. S. Ruoff, *Nano letters*, 2012, **12**, 5679-5683. 3.
- 4. D. H. Shin, K. W. Lee, J. S. Lee, J. H. Kim, S. Kim and S. H. Choi, Nanotechnology, 2014, 25, 125701-125707. 10
 - 5.
- J. Gao, W. Y. Wang, L. J. Chen, X. Y. Hu and H. Z. Geng, *Applied Surface Science*, 2013, **277**, 128-133. I. N.Kholmanov, M. D. Stoller, J. Edgeworth, W. Lee, H. F. Li, J. Lee, C. Barnhart, J. R. Potts, R. Piner, D. Akinwande, J. E. 6. Barrick and R. S. Ruoff, ACS Nano, 2012, 6, 5157-5163.
- H. W. Tien, S. T. Hsiao, W. H. Liao, Y. H. Yu, F. C. Lin, Y. S. Wang, S. M. Li and C. C. M. Ma, *Carbon*, 2013, **58**, 198-207. Y. S. Yun, D. H. Kim, B. Kim, H. H. Park and H. J. Jin, *Synthetic Metals*, 2012, **162**, 1364-1368. 7.
- 8.
- X. Zhang, X. b. Yan, J. t. Chen and J. p. Zhao, Carbon, 2014, 69, 437-443. 9
- S. H. Domingues, I. N. Kholmanov, T. Kim, J. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin and R. S. Ruoff, 10. Carbon, 2013, 63, 454-459.
- 11. H. W. Tien, Y. L. Huang, S. Y. Yang, J. Y. Wang and C. C. M. Ma, Carbon, 2011, 49, 1550-1560.

20

15