Supporting information

Investigating the interaction of dye molecules with graphene oxide by using surface plasmon resonance technique

TianyuXue, ^a Zhao Wang, ^aWeimingGuan, ^bChangminHou, ^c Zhan Shi, ^cWeitaoZheng ^a and Xiaoqiang Cui* ^a

^aKey Laboratory of Automobile Materials of MOE and State Key Laboratory of Superhard Materials, Department of Materials Science, Jilin University, Changchun 130012, People's Republic of China.

E-mail: xqcui@jlu.edu.cn (X.C.).

^bState Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming, 650106, People's Republic of China.

^cState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China

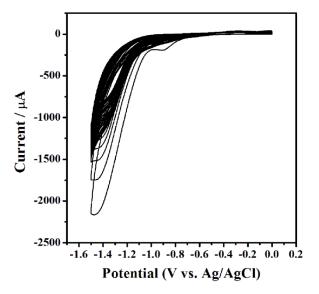


Figure S1. *In-situ* electrochemical reduction of GO on the Au surface by cyclic voltammetry in PBS (Ph 7.4) saturated with nitrogen gas at a scan rate of 50 mV/s.

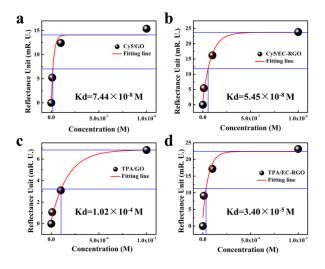


Figure S2. SPR response versus a series concentrations of Cy5 (a, b) and TPA (c, d) on the substrates of GO (a, c), and EC-rGO (b,d) substrates. The dissociation constants (Kd) are obtained at the point of 1/2 of Maximal equivalent response of SPR. Each point corresponds to the SPR response shift for the concentration of TPA molecules.