# **Supporting Information**

# Rapid and ratiometric sensor for CAN (Ce<sup>4+</sup>) through metal assisted oxidation reaction-altered Through Bond Energy Transfer (TBET): development of low cost devices (TLC plate sticks)

## Shyamaprosad Goswami\*, Sima Paul and Abhishek Manna

Department of Chemistry, Indian Institute of Engineering Science & Technology, Shibpur, (Formerly Bengal Engg. and Science University, Shibpur), Howrah-711103, West Bengal, India.

## **CONTENTS**

| 1. | Detection of Quantum yield                                       | .1 |
|----|------------------------------------------------------------------|----|
| 2. | Calculation of the detection limit                               | 2  |
| 3. | Calculation of rate constant                                     | 3  |
| 4. | pH effect on RCH moiety                                          | 3  |
| 5. | <sup>1</sup> H-NMR, <sup>13</sup> C-NMR and Mass spectra3-5      | 5  |
| 6. | UV-vis spectra of receptor with different oxidizing agents       | 8  |
| 7. | Fluorescence spectra of receptor with different oxidizing agents | 0  |
| 8. | References                                                       | 10 |

#### 1. Determination of fluorescence quantum yield:

Here, the quantum yield  $\varphi$  was measured by using the following equation,

 $\varphi_{\rm x} = \varphi_{\rm s} (F_{\rm x} / F_{\rm s}) (A_{\rm s} / A_{\rm x}) (n_{\rm x}^2 / n_{\rm s}^2)$ 

Where,

X & S indicate the unknown and standard solution respectively,  $\varphi$  = quantum yield,

F = area under the emission curve, A = absorbance at the excitation wave length,

n = index of refraction of the solvent. Here  $\varphi$  measurements were performed using quinine sulfate in ethanol as standard [ $\varphi = 0.546$ ] (error ~ 10%).

The quantum yield of **RCH** itself is 0.004 which is remarkably changed into 0.26, an enhancement around 65 fold is observed.

#### 2. Calculation of the detection limit:



Figure S1: Absorbance change of RCH upon gradual addition of CAN.

The detection limit DL of **RCH** for CAN was determined from the following equation<sup>1</sup>:

DL = K\* Sb1/S

Where K = 2 or 3 (we take 2 in this case); Sb1 is the standard deviation of the blank solution;

S is the slope of the calibration curve.

From the graph we get slope = 0.0242, and Sb1 value is 0.008292. Thus using the formula we get the Detection Limit =  $0.685 \mu$ M i.e. RCH can detect CAN in this minimum concentration.

#### 3. Calculation of rate constant:

From the time vs. Fl. Intensity vs. time (sec.) plot at fixed wavelength (413nm) using first order rate equation (Figure S5), we get rate constant K = slope X 2.303 = 0.0495 X 2.303 =  $11.39 \times 10^{-2}$  s<sup>-1</sup>,

## 4. pH effect on RCH moiety:



**Figure S5:** The change of fluorescence intensity of the receptor i.e. RCH  $(c = 2x10^{-5} \text{ M})$  (at 585 nm) with pH.

## 5. NMR and HRMS spectra of RCH and the corresponding CAN adduct:

#### <sup>1</sup>H NMR spectrum of Receptor i.e. RCH:



## <sup>13</sup>C NMR spectrum of RCH:



<sup>1</sup>H NMR spectrum of CAN adduct:



HR MS Spectra of CAN adduct :



6. UV-vis absorption spectra of RCH with different oxidizing agents  $Co^{2+}$ ,  $Hg^{2+}$ ,  $Fe^{3+}$ , I<sup>-</sup>, IBX,  $NO_3^-$ ,  $NO_2^-$ ,  $O_2^-$ ,  $OH^-$ ,  $OCI^-$ ,  $PO_4^{3-}$ ,  $SO_4^{2-}$ ,  $SO_3^{2-}$ ,  $CH_3CO_3H$ . The solutions of anions and oxidants were prepared from FeCl<sub>3</sub>,  $Co(ClO_4)_2 \cdot 6H_2O$ ,  $HgCl_2$ , KI, NaNO<sub>2</sub>, NaNO<sub>3</sub>, Na<sub>3</sub>PO<sub>4</sub>, Na<sub>2</sub>SO<sub>3</sub>, Na<sub>2</sub>SO<sub>4</sub> in CH<sub>3</sub>CN-H<sub>2</sub>O)







7. Fluorescence emission spectra of RCH with different oxidizing agents Co<sup>2+</sup>, Hg<sup>2+</sup>, Fe<sup>3+</sup>, I<sup>-</sup>, IBX, NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup>, O<sub>2</sub><sup>-</sup>, OH<sup>-</sup>, OCl<sup>-</sup>, PO<sub>4</sub><sup>3-</sup>, SO<sub>4</sub><sup>2-</sup>, SO<sub>3</sub><sup>2-</sup>, CH<sub>3</sub>CO<sub>3</sub>H. The solutions of anions and oxidants were prepared from FeCl<sub>3</sub>, Co(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O, HgCl<sub>2</sub>, KI, NaNO<sub>2</sub>, NaNO<sub>3</sub>, Na<sub>3</sub>PO<sub>4</sub>, Na<sub>2</sub>SO<sub>3</sub>, Na<sub>2</sub>SO<sub>4</sub> in CH<sub>3</sub>CN-H<sub>2</sub>O)



8





## 8. References :

 M. Zhu, M. Yuan, X. Liu, J. Xu, J. Lv, C. Huang, H. Liu, Y. Li, S. Wang, D. Zhu, Org. Lett. 2008, 10, 1481-1484