Supporting Information for

Carbon-Coated Ni₃Sn₂ Nanoparticles Embedded in Porous Carbon Nanosheets as Lithium Ion Battery Anode with Outstanding Cycling Stability

Jian Qin^a, Xiang Zhang^a, Naiqin Zhao^{a, b}, Chunsheng Shi^a, Enzuo Liu^a, Jiajun Li^a, and Chunnian He^{a, b, *}

^aSchool of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, China ^bCollaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

^a School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, China

^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China Email: cnhe08@tju.edu.cn

[†] Electronic supplementary information (ESI) available.

Figure S1. (a) SEM image of Ni(NO₃)₂-citric acid complex film coated on the surface

of NaCl particles, (b) SEM image of Ni@C@PGC without removing NaCl.

Figure S2. (a)-(b) SEM images of Ni@C@PGC nanosheets produced at 600 °C, (c)-(d) TEM and HRTEM images of Ni@C@PGC nanosheets produced at 600 °C, from which we can see that Ni particles coated with onion-like carbon shells (~2nm) were distributed evenly in the nanosheets without agglomeration. (d) XRD pattern of Ni@C@PGC nanosheets, illustrating that Ni(NO₃)₂ was reduced to Ni completely

before the CVT process.

Figure S3. XRD pattern of $Ni_3Sn_2@C@PGC$ after TGA analysis, form which we can

see that the Ni_3Sn_2 was oxidized completely.

Figure S4. (a) SEM and (b) TEM image of Ni₃Sn₂/C nanoblock synthesized without

using NaCl.

Figure S5. SEM images of 2D Ni₃Sn₂@C@PGC nanosheets, (a) W_{NaCl} : $W_{citric acid} = 2.94 : 1$, in precursor, (b) W_{NaCl} : $W_{citric acid} = 5.88 : 1$, in precursor. We can see that the thickness of 2D nanosheets can be adjusted by the amount of NaCl in precursor.

Figure S6. EDS spectrum of 2D Ni₃Sn₂@C@PGC nanosheets, showing that Ni : Sn

(At%)≈3:2.

Figure S7. EDX spectrum of 2D $Ni_3Sn_2@C@PGC$ nanosheets.

Figure S8. N_2 adsorption-desorption isotherms of Ni_3Sn_2/C nanoblocks, suggesting that their BET surface area is much lower than that of 2D $Ni_3Sn_2@C@PGC$ nanosheets.

Figure S9. Ragone plot exhibiting the power density and energy density of 2D $Ni_3Sn_2@C@PGC$ hybrid electrode.

Rate cycle number	Step number	Cycle number	Charge/discharge rate (C, 1C = 570 mAh/g)	Average reversible capacity of 2D Ni ₃ Sn ₂ @C@PGC electrode (mAh/g)	Average reversible capacity of Ni ₃ Sn ₂ /C nanoblocks electrode (mAh/g)
1	1	30	0.2	489	121.8
	2	60	0.5	424.7	88.1
	3	90	1	372	64.2
	4	120	2	313.6	44.2
	5	150	5	190.8	23.9
2	6	180	0.2	500.3	140.9
	7	210	0.5	427.7	
	8	240	1	325.8	
	9	270	2	194.9	
	10	300	5	61.7	
	11	320	0.2	481.5	

Table S1. Detailed information of rate cycle performance of 2D $Ni_3Sn_2@C@PGC$ nanosheet and Ni_3Sn_2/C nanoblock electrodes corresponding to Figure 5d.