Electronic Supplementary Information

One-pot Solvent-Free Reductive Amination of Aldehydes with a Solidified Amine

Philjun Kang,^a Kyu Myung Lee,^b Won Koo Lee, ^{*,a} Kyu Hyung Lee,^a Byeongno Lee,^a Jaeheung Cho,^c and Nam Hwi Hur^{*,a}

^a Department of Chemistry, Sogang University, Seoul 121-742, Korea

^b Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea

^c Department of Emerging Materials Science, DGIST, Daegu 711-873, Korea

*e-mail: <u>wonkoo@sogang.ac.kr</u> / <u>nhhur@sogang.ac.kr</u>

Table of Contents

1.	Experimental details	-S3
2.	General procedure for the preparation of secondary amine using catalytic hydrogena	ation
	between solidified amine 2 and aldehydes 3	S4
3.	General procedure for the preparation of secondary amine using stoichiometric reduc	ction
	between solidified amine 2 and aldehydes 3	S4
4.	Crystal growth of (<i>S</i> , <i>E</i>)- <i>N</i> , <i>N</i> -dimethyl-4-(((1-phenylethyl)-imino)methyl)aniline 4a	S4
5.	X-ray crystallography data for 4a	S5
6.	Table S1. Structural data for single crystal data of 4a	S6
7.	Table S2. Selected bond distances and bond angles(Å, °) of 4a	-S7
8.	Table S3. Check CIF for 4a	S8
9.	Crystal image of 4a	-S11
10.	Analytical data of amines obtained from reductive amination between 2 and 3	·S12
11.	. Characterization of 2	S18
12.	. NMR data for 4a	-S22
13.	. NMR data for 5a~5r	S24
14.	. References	·S60

Experimental Details

Materials. (S)-(-)-phenylethylamine was purchased from Lancaster, benzaldehyde was purchased from Hanawa, Platinum(IV) oxide hydrate (80~81% Pt) and Platinum 10% on activated carbon were purchased from Strem chemicals Inc., p-anisaldehyde, 3-methoxybenzaldehyde, 2-furaldehyde, 3-furaldehyde, 1-naphthaldehyde, 2-methoxy-1-naphthaldehyde, 4-*tert*-butylbenzaldehyde, 4-(diphenylamino)benzaldehyde, N-Methyl-2pyrrolecarboxaldehyde, 1-methylindole-3-carbaldehyde, 3-thiophenecarboxaldehyde, sodium borohydride, isobutyraldehyde, 5 platinum activated charcoal (Pt wt%), trimethylacetaldehyde, on cyclohexanecarboxaldehyde, cyclopentanecarboxaldehyde were purchased from Sigma-Aldrich, 3,4dimethoxybenzaldehyde, 4-(dimethylamino)benzaldehyde were purchased from Acros, 3-fluorobenzaldehyde, 3chlorobenzaldehyde, thiophene-2-carbaldehyde were purchased from TCI. All of the reagents were used without any further purification. Chiral amine carbamate salt 2 was prepared by previously reported method.^{S1}

Instrumentation

All reactions were carried out in oven-dried glasswares with magnetic stirring. Reactions were monitored by thin layer chromatography (TLC) with 0.25 mm E. Merck pre-coated silica gel plates (60 F254). Visualization was accomplished with either UV light, or by immersion in solutions of ninhydrin followed by heating on a hot plate for about 10 s. Purification of reaction products was carried out by flash chromatography using Kieselgel 60 Art 9385 (230-400 mesh). Powder X-ray diffraction (XRD) data were collected using a Rigaku DMAX 2500 diffractometer (Cu K α) operating at 40 kV and 150 mA. A Nicolet 205 instrument was used to measure infrared spectra. Melting point was measured with a SMP10-BIBBY. Thermogravimetric analysis (TGA) was performed with a TA Instrument TGA 2050 where temperature was increased by 10 °C/min. GC/MS data were recorded on an Agilent 5973N and elemental analyses were obtained using a Carlo Erba EA1180 at the Organic Chemistry Research Center in Sogang University. ¹H NMR and ¹³C NMR spectra in solution were recorded on a Varian 400-MHz Gemini operating at 400 MHz for ¹H and 100 MHz for ¹³C, and a Varian UNITY INOVA 500 at 500 MHz for ¹H and 125 MHz for ¹³C. Thermolet reported relative to TMS ($\delta = 0.0$) for ¹H NMR and chloroform ($\delta = 77.16$) for ¹³C NMR. Data are reported as (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, sept = septet). Coupling constants are given in Hz. Ambiguous assignments were resolved

on the basis of standard one dimensional proton decoupling experiments. Optical rotations were obtained using a Rudolph Autopol III digital polarimeter and optical rotation data were reported as follows: $[\alpha]^{24}_{D}$ (concentration c = g/100 mL, solvent).

General procedure for the preparation of secondary amine using catalytic hydrogenation between solidified amine 2 and aldehydes 3

4-(dimethylamino)-benzaldehyde **3a** (149.2 mg, 1.00 mmol) was placed in a vial, the solidified amine **2** (143.2 mg, 0.500 mmol) was added and the vial warmed to 60 °C for 1 hour, then allowed to cool to room temperature. To the vial was added PtO₂ (4.3 mg), Pt/C (35.1 mg), or Pd/C (18.6 mg) and the hydrogenation proceeded at room temperature under 1 atm of H₂ for 17h. The crude product was purified by silica gel flash column chromatography (30% EA / 70% Hexane).

General procedure for the preparation of secondary amine using stoichiometric reduction between solidified amine 2 and aldehydes 3

4-(Dimethylamino)-benzaldehyde **3a** (149 mg, 1.00 mmol) was placed in a vial, the solidified amine **2** (143 mg, 0.50 mmol) was added, and the mixture was warmed to 60 °C for 1 hour, then allowed to cool to room temperature. To the mixture was added methanol (0.7 mL) and sodium borohydride (42 mg, 1.10 mmol) under air at room temperature. After 0.5h, the reaction mixture was diluted with ethyl acetate and treated with water. The organic layer was extracted from the aqueous layer using Pasteur pipette. The solvent of organic layer was removed in vacuo. The crude product was purified by silica gel flash column chromatography (30% EA / 70% Hexane).

Crystal growth of (S,E)-N,N-Dimethyl-4-(((1-phenylethyl)-imino)methyl)aniline 4a

For the growth of **4a** crystals, methylene chloride was added to the solid powder (252 mg) until the powder was completely dissolved at ambient temperature (1 mL total), followed by addition of hexane (1 mL) without mixing in a 5 mL vial. The resulting solution was carefully stored in the refrigerator for one day. Yellow crystals grew from the solution, which were separated by filtering and washing with pentane (3×3 mL).

crystallography. A single crystal of (S,E)-N,N-Dimethyl-4-(((1-X-ray phenylethyl)imino)methyl)aniline 4a was selected by a nylon loop (Hampton Research Co.) placed on a handmade cooper plate, which was placed inside a liquid N2 Dewar vessel at approximately -40 °C and was mounted on a goniometer head in a N₂ cryostream. Data collections were carried out in a Bruker SMART AXS diffractometer equipped with a monochromator with a Mo K α ($\lambda = 0.71073$ Å) incident beam. The charge-coupled device (CCD) data were integrated and scaled using the Bruker-SAINT software package, and the structure was solved and refined using SHEXTL V 6.12.^{S2} Hydrogen atoms were located in calculated (S,E)-N,N-Dimethyl-4-(((1the positions. The crystal data for phenylethyl)imino)methyl)aniline **4a**: $C_{17}H_{20}N_2$, Monoclinic, P2(1), Z = 2, a = 8.5299(3), b= 6.0689(2), c = 13.7293(5) Å, $\beta = 91.554(2)$ °, V = 710.46(4) Å³, $\mu = 0.070$ mm⁻¹, $\rho_{calcd} =$ 1.180 g/cm³, $R_1 = 0.0353$, and $wR_2 = 0.0930$ for 3410 unique reflections and 175 variables. The crystallographic data for (*S*,*E*)-*N*,*N*-dimethyl-4-(((1-phenylethyl)imino)methyl)aniline 4a are listed in Table S1, while Table S2 lists the selected bond distances and angles. CCDC-953131 for (S,E)-N,N-dimethyl-4-(((1-phenylethyl)imino)methyl)aniline 4a contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Empirical formula	$C_{17}H_{20}N_2$
Formula weight	252.35
Temperature (K)	100(2)
Wavelength (Å)	0.71073
Crystal system/space group	Monoclinic, P2(1)
Unit cell dimensions	
a (Å)	8.5299(3)
<i>b</i> (Å)	6.0689(2
<i>c</i> (Å)	13.7293(5)
$\alpha(^{\circ})$	90
eta(°)	91.554(2)
γ(°)	90
Volume (Å ³)	710.46(4)
Z	2
Calculated density (g/cm ⁻³)	1.180
Absorption coefficient (mm ⁻¹)	0.070
Reflections collected	12394
Independent reflections [R(int)]	3410 [0.0399]

 Table S1. Structural data for (S,E)-N,N-dimethyl-4-(((1-phenylethyl)imino)methyl)aniline 4a

Refinement method	Full-matrix					
	least-squares on F^2					
Data/restraints/parameters	3410/1/175					
Goodness-of-fit on F^2	0.641					
Final <i>R</i> indices $[I > 2 \text{sigma}(I)]$	$R_1 = 0.0353, wR_2 = 0.0930$					
<i>R</i> indices (all data)	$R_1 = 0.0438, wR_2 = 0.1008$					
Largest difference peak and hole (e/Å ³)	0.143 and -0.164					

Table S2. Selected bond distances and bond angles (Å, °) (*S*,*E*)-*N*,*N*-dimethyl-4-(((1-phenylethyl)imino)methyl)aniline 4a

	Bond Distances (Å)								
N1-C7	1.4732(15)								
N1-C9	1.2729(17)								
N2-C13	1.3737(16)								
N2-C16	1.455(2)								
N2-C17	1.4497(19)								
Bond Angles (°)									
C7-N1-C9	117.11(11)								
C16-N2-C17	116.92(11)								
C17-N2-C13	120.69(12)								
C13-N2-C16	119.98(12)								

Table S3. checkCIF/PLATON report

Structure factors have been supplied for datablock(s) chem260

No syntax errors found. CIF dictionary Interpreting this report

Datablock: chem260

Bond precision:	C-C = 0.0018 P	A Wavelength=0.71073					
Cell:	a=8.5299(3) alpha=90	b=6.0689(2) beta=91.554(2)	c=13.7293(5) gamma=90				
Temperature:	100 K						
	Calculated	Reported					
Volume	710.47(4)	710.46(4)					
Space group	P 21	P2(1)					
Hall group	P 2yb	?					
Moiety	C17 H20 N2	?					
Sum formula	C17 H20 N2	C17 H20 N2					
Mr	252.35	252.35					
Dx,g cm-3	1.180	1.180					
Z	2	2					
Mu (mm-1)	0.070	0.070					
F000	272.0	272.0					
F000′	272.09						
h,k,lmax	11,8,18	11,8,18					
Nref	1922[3515]	3410					
Tmin,Tmax	0.983,0.997	0.979,0.997					
Tmin'	0.979						
Correction meth	od= MULTI-SCAN						
Data completene	ss= 1.77/0.97	Theta(max) = 28.2	90				
R(reflections)=	0.0353(2859)	wR2(reflections)	= 0.1008(3410)				
S = 0.641	Npar	= 175					

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

Alert level B

PLAT035_ALERT_1_B No _chemical_absolute_configuration info given .

Alert level C

ABSTY02_ALERT_1_C An _exptl_absorpt_correction_type has been given without a literature citation. This should be contained in the exptl absorpt process details field. Absorption correction given as multi-scan GOODF01_ALERT_2_C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.641 STRVA01 ALERT 4 C Flack parameter is too small From the CIF: _refine_ls_abs_structure_Flack -4.000 From the CIF: _refine_ls_abs_structure_Flack_su 2.000 PLAT033 ALERT 4 C Flack x Parameter Value Deviates from Zero -4.000

Alert level G

REFLT03 ALERT 4 G ALERT: MoKa measured Friedel data cannot be used to determine absolute structure in a light-atom study EXCEPT under VERY special conditions. It is preferred that Friedel data is merged in such cases. From the CIF: _diffrn_reflns_theta_max 28.29 From the CIF: __terns_...__ Count of symmetry unique reflns 1922 (total/calc) 177.42% TEST3: Check From the CIF: _reflns_number_total 3410 Friedels for noncentro structure Estimate of Friedel pairs measured 1488 Fraction of Friedel pairs measured 0.774 Are heavy atom types Z>Si present no PLAT005 ALERT 5 G No iucr refine instructions details in CIF 2 PLAT032 ALERT 4 G Std. Uncertainty on Flack Parameter Value High . 2.000 PLAT791 ALERT 4 G Note: The Model has Chirality at C7 (Verify) S PLAT916 ALERT 2 G Hooft y and Flack x Parameter values differ by . 4.30

0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 4 ALERT level C = Check. Ensure it is not caused by an omission or oversight 5 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special details" fields of the CIF. Check CIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/04/2012; check.def file version of 14/04/2012

Analytical data of amines obtained from reductive amination between 2 and 3

(S)-1-Phenylethanaminium (S)-(1-phenylethyl)carbamate (2): white solid; mp N/A (totally sublimed at ~100 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.13-7.31 (m, 9H), 6.44 (s, br, 2H) , 4.36-4.41 (m, 1H), 3.93-3.94 (d, 1H, J = 6.4 Hz) 1.31-1.33 (d, 3H, J = 6.4 Hz), 1.15-1.17 (d, 3H, J = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 146.2, 143.8, 128.5, 128.2, 127.3, 126.3, 126.0, 125.8, 50.74, 50.52, 23.44; ν_{max} (powder)/cm⁻¹ = 1621 (w) and 1554 (m) for v(C=O); Anal. Calcd for C₁₇H₂₂N₂O₂: C, 71.30; H, 7.74; N, 9.78. found: C,71.23; H, 7.65; N, 9.89

Analytical data of amines obtained from the reductive amination reactions between 2 and aldehydes 3

(*S,E*)-*N,N*-Dimethyl-4-(((1-phenylethyl)imino)methyl)aniline (4a):^{S3} pale yellow crystal; mp 87.7 °C; $[\alpha]^{24}_{D}$ +184 (*c* 1.00, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.24 (s, 1H), 7.64-7.66 (d, 2H, *J* = 8.5 Hz), 7.41-7.43 (d, 2H, *J* = 8 Hz), 7.30-7.33 (t, 2H, *J* = 7.5 Hz), 7.20-7.23 (m, 1H), 6.68-6.70 (d, 2H, *J* = 8.5 Hz), 4.46-4.49 (q, 1H, *J* = 6.5 Hz) 3.00 (s, 6H), 1.62 (br, s, 1H) 1.57-1.58 (d, 3H, *J* = 6.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 159.6, 152.3, 146.0, 129.8, 128.5, 126.9, 126.7, 125.0, 111.8, 69.6, 40.4, 25.0; Anal. Calcd for C₁₇H₂₀N₂: C, 80.91; H, 7.99; N, 11.10. found: C, 80.76; H, 7.86; N, 11.33; MS (EI⁺) m/z = 252, 237, 221, 210, 193, 175, 165, 147, 134, 122, 105, 91, 77; GC-MS retention time Rt = 12.72 min.

(*S*)-*N*,*N*-Dimethyl-4-((1-phenylethylamino)methyl)aniline (5a): colorless oil; $[\alpha]^{24}{}_{\rm D}$ +17.7 (*c* 0.015, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.37 (m, 5H), 7.14-7.16 (d, 2H, *J*= 8.4 Hz), 6.70-6.72 (d, 2H, *J* = 8.8 Hz), 3.78-3.83 (q, 1H, *J* = 6.4 Hz), 3.55-3.58 (d, 1H, *J* = 12.8 Hz), 3.48-3.51 (d, 1H, *J* = 12.8 Hz), 2.93 (s, 6H), 1.34-1.36 (d, 3H, *J* = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 145.8, 129.2, 128.7, 128.5, 127.0, 126.9, 112.8, 57.3, 51.1, 40.9, 24.6; Anal. Calcd. for C₁₇H₂₂N₂: C, 80.27; H, 8.72; N, 11.01. found: C, 80.31; H, 8.62; N, 10.86; MS (EI⁺) m/z = 254, 149, 134, 118, 105, 91, 77; GC-MS retention time Rt = 12.20 min.

(*S*)-N-(3-Fluorobenzyl)-1-phenylethanamine (5b): colorless oil; $[\alpha]^{24}_{D}$ -26.9 (*c* 0.0067, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.33 (m, 6H), 6.87-7.02 (m, 3H), 3.74-3.79 (q, 1H, *J* = 6.4 Hz), 3.60-3.64 (d, 1H, *J* = 14.0 Hz), 3.54-3.57 (d, 1H, *J* = 14.0 Hz), 1.34-1.35 (d, 3H, *J* = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 163.0 (d, ¹*J*_{C-F} =

244.1 Hz), 145.4, 143.5 (d, ${}^{3}J_{C-F} = 6.7$ Hz), 129.9 (d, ${}^{3}J_{C-F} = 7.4$ Hz), 128.6, 127.1, 126.7, 123.7, 129.8 (d, ${}^{2}J_{C-F} = 20.9$ Hz), 113.7 (d, ${}^{2}J_{C-F} = 20.9$ Hz); Anal. Calcd for C₁₅H₁₆FN: C, 78.57; H, 7.03; N, 6.11. found: C, 78.56; H, 6.98; N, 5.98. MS (EI⁺) m/z = 229, 214, 152, 124, 109, 91, 77; GC-MS retention time Rt = 9.83 min.

(*S*)-N-(3-Chlorobenzyl)-1-phenylethanamine (5c): colorless oil; $[\alpha]^{24}{}_{D}$ -37.7 (*c* 0.0060, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.13-7.34 (m, 9H), 3.75-3.80 (q, 1H, *J* = 6.4 Hz), 3.59-3.63 (d, 1H, *J* = 13.2 Hz), 3.53-3.57 (d, 1H, *J* = 13.2 Hz), 1.35-1.37 (d, 3H, *J* = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 142.9, 134.3, 129.7, 128.6, 128.3, 127.2, 127.1, 126.7, 126.3, 57.7, 51.2, 24.6; Anal. Calcd for C₁₅H₁₆ClN: C, 73.31; H, 6.56; N, 5.70. found: C, 73.28; H, 6.61; N, 5.64. MS (EI⁺) m/z = 245, 230, 168, 125, 105, 89, 77; GC-MS retention time Rt = 10.94 min.

(S)-1-Phenyl-N-(thiophen-3-ylmethyl)ethanamine (5d): colorless oil; $[\alpha]^{24}_{D}$ -28.6 (*c* 0.010, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.36 (m, 4H), 7.18-7.26 (m, 2H), 7.03 (s, 1H), 6.97-6.98 (d, 1H, *J* = 4.4 Hz), 3.75-3.80 (q, 1H, *J* = 6.4 Hz), 3.61(s, 2H), 1.33-1.35 (d, 3H, 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 141.7, 128.5, 127.7, 127.1, 126.7, 125,7, 121.4, 57.5, 46.7, 24.6; Anal. Calcd for C₁₃H₁₅NS: C, 71.84; H, 6.96; N, 6.44; S, 14.75. found: C, 71.80; H, 6.95; N, 6.44; S, 14.80. MS(EI⁺) m/z = 216, 202, 140, 120, 112, 105, 97, 91, 85, 77; GC-MS retention time Rt = 10.58 min.

(S)-N-Benzyl-1-phenylethanamine (5e):^{S4} colorless oil; $[\alpha]^{24}_{D}$ -38.3 (*c* 0.0073, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.33 (m, 10H), 3.76-3.81 (q, 1H, *J* = 6.8 Hz), 3.62-3.65 (d, 1H, *J* = 12.8 Hz), 3.55-3.58 (d, 1H, *J* = 12.8 Hz), 1.33-1.35 (d, 3H, *J* = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 140.8, 128.6, 128.5, 128.3, 127.1, 126.9, 126.8; Anal. Calcd for C₁₅H₁₇N: C, 85.26; H, 8.11; N, 6.63. found: C, 85.20; H, 8.10; N, 6.58. MS (EI⁺) m/z = 196, 105, 91, 77, 65; GC-MS retention time Rt = 9.86 min.

(S)-N-(4-Methoxybenzyl)-1-phenylethanamine (5f):^{S5} colorless oil; $[\alpha]^{24}_{D}$ -16.4 (*c* 0.0073, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.33 (d, 5H *J* = 4.8 Hz), 7.22-7.25 (q, 1H, *J* = 4 Hz), 6.27 (s, 1H), 6.07-6.08 (d, 1H, *J* = 2.4 Hz), 3.74-3.79 (q, 1H, *J* = 6.4 Hz), 3.63-3.66 (d, 1H, *J* = 14.4 Hz), 3.54-3.57 (d, 1H, *J* = 14.4 Hz), 1.33-1.35 (d, 3H, *J* = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 145.1, 141.81, 128.6, 127.1, 126.8, 110.1, 106.9, 57.1, 44.1,

24.4; Anal. Calcd for $C_{16}H_{19}NO$: C, 79.63; H, 7.94; N, 5.80. found: C, 79.65; H, 7.96; N, 5.95. MS (EI+) m/z = 241, 226, 136, 121, 105, 91, 77, 65; GC-MS retention time Rt = 11.30 min.

(S)-N-(3-Methoxybenzyl)-1-phenylethanamine (5g):^{S6} colorless oil; $[\alpha]^{24}_{D}$ -3.2 (*c* 0.0090, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.33 (m, 6H), 6.75-6.85 (m, 3H), 3.76-3.81 (q, 1H, *J* = 6.4 Hz), 3.76 (s, 3H), 3.61-3.64 (d, 1H, *J* = 13.2 Hz), 3.53-3.57 (d, 1H, 13.2 Hz), 1.34-1.36 (d, 3H, 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 145.5, 142.3, 129.4, 128.5, 127.0, 126.8, 120.5, 113.7, 112.3, 57.5, 55.2, 51.6, 24.5; Anal. Calcd for C₁₆H₁₉NO: C, 79.63; H, 7.94; N, 5.80. found: C, 79.74; H, 7.90; N, 5.75. MS (EI⁺) m/z = 240, 226, 164, 136, 121, 113, 105, 91, 77, 65; GC-MS retention time Rt = 11.19 min.

(S)-N-(Naphthalen-1-ylmethyl)-1-phenylethanamine (5h):^{S7} colorless oil; $[\alpha]^{24}_{D}$ +13.9 (*c* 0.0067, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.99 (d, 1H, *J* = 7.2 Hz), 7.82-7.84 (d, 1H, *J* = 7.6 Hz), 7.73-7.75 (d, 1H, *J* = 7.6 Hz), 7.34-7.50 (m, 8H), 7.28-7.30 (m, 1H), 4.07-4.10 (d, 1H, *J* = 13.2 Hz), 3.99-4.03 (d, 1H, *J* = 13.2 Hz), 3.89-3.94 (q, 1H, *J* = 6.4 Hz), 1.38-1.40 (d, 3H, *J* = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 136.3, 133.9, 131.9, 128.7, 128.6, 127.7, 127.1, 126.9, 126.2, 126.0, 125.6, 125.5, 123.9, 58.4, 49.6, 24.6; Anal. Calcd for C₁₉H₁₉N: C, 87.31; H, 7.33; N, 5.36. found: C, 87.34; H, 7.33; N, 5.27. MS (EI⁺) m/z = 261, 246, 156, 141, 115, 105, 91, 77; GC-MS retention time Rt = 12.65 min.

(S)-N-((2-Methoxynaphthalen-1-yl)methyl)-1-phenylethanamine (5i): yellow oil; $[\alpha]^{24}_{D}$ +10.6 (*c* 0.011, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.80 (m, 3H), 7.21-7.45 (m, 8H), 4.08-4.11 (d, 1H, *J* = 12.0 Hz), 4.03-4.00 (d, 1H, *J* = 12.0 Hz), 3.86-3.98 (m, 4H), 1.36-1.37 (d, 3H, 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 146.0, 133.3, 129.2, 129.0, 128.5, 128.4, 127.0, 126.6, 123.3, 123.2, 121.4, 113.1, 58.4, 56.4, 41.6, 24.8; Anal. Calcd for C₂₀H₂₁NO: C, 82.44; H, 7.26; N, 4.81; O, 5.49. found: C, 82.37; H, 7.14; N, 4.95. MS (EI⁺) m/z = 291, 276, 260, 186, 171, 156, 141, 128, 115, 105, 91, 77; GC-MS retention time Rt = 13.36 min.

(S)-N-(4-tert-Butylbenzyl)-1-phenylethanamine (5j): colorless oil; $[\alpha]^{24}_D$ +4.6 (*c* 0.0056, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.35 (m, 9H), 3.79-3.84 (q, 1H, *J* = 6.4 Hz), 3.60-3.63 (d, 1H, *J* = 13.2 Hz), 1.35-1.36 (d, 3H, J) = 0.4 Hz)

J = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 125.8, 127.7, 128.5, 127.9, 127.0, 126.8, 125.4, 57.7, 51.4, 34.5, 31.5, 24.7; Anal. Calcd for C₁₉H₂₅N: C, 85.34; H, 9.42; N, 5.24. found: C, 85.27; H, 9.52; N, 5.12. MS (EI⁺) m/z = 265, 252, 162, 147, 132, 117, 105, 91, 77, 65; GC-MS retention time Rt = 11.59 min.

(S)-N-((1-Methyl-1H-pyrrol-2-yl)methyl)-1-phenylethanamine (5k): colorless oil; $[\alpha]^{24}_{D}$ -14.1 (*c* 0.0064, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.38 (m, 5H) 6.54 (s, 1H), 5.97-6.02 (m, 2H), 3.78-2.82 (q, 1H, *J* = 6.4 Hz), 3.54-3.58 (d, 1H, *J* = 13.2 Hz), 3.55 (s, 3H), 3.49-3.52 (d, 1H, *J* = 13.2 Hz), 1.33-1.35 (d, 3H, *J* = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 131.4, 128.5, 127.0, 126.7, 122.2, 107.6, 106.5, 58.0, 43.5, 33.7, 24.5; Anal. Calcd for C₁₄H₁₈N₂: C, 78.46; H, 8.47; N, 13.07. found: C, 78.41; H, 8.34; N, 13.07. MS (EI⁺) m/z = 214, 132, 120, 105, 94, 77; GC-MS retention time Rt = 10.00 min.

(S)-N-((1-Methyl-1H-indol-3-yl)methyl)-1-phenylethanamine (5l): yellow oil; $[\alpha]^{24}_{D}$ +3.6 (*c* 0.0047, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.56 (d, 1H, *J* = 8.0 Hz), 7.06-7.39 (m, 8H), 6.89 (s, 1H), 3.84-3.89 (q, 1H, *J* = 6.4 Hz), 3.80-3.83 (d, 1H, *J* = 13.2 Hz), 3.74-3.78 (d, 1H, *J* = 13.2 Hz), 1.34-1.36 (d, 3H, *J* = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 137.1, 128.5, 127.5, 127.2, 126.9, 126.8, 121.7, 119.1, 119.0, 113.7, 109.3, 57.8, 42.6, 32.6, 24.6; Anal. Calcd for C₁₈H₂₀N₂: C, 81.78; H, 7.63; N, 10.60. found: C, 81.78; H, 7.53; N, 10.50. MS (EI⁺) m/z = 264, 159, 144, 132, 115, 106, 91, 77; GC-MS retention time Rt = 12.91 min.

(S)-N-(Furan-2-ylmethyl)-1-phenylethanamine (5m):^{S8} colorless oil; $[\alpha]^{24}_{D}$ -68.7 (*c* 0.013, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.38 (m, 5H), 7.21-7.25 (dd, 1H, *J* = 4.0, 8.0 Hz), 6.26-6.27(d, 1H, *J* = 4.0 Hz), 6.07-6.08(d, 1H, *J* = 4.0 Hz), 3.74-3.79 (q, 1H, *J* = 6.4 Hz), 3.63-3.66 (d, 1H, *J* = 14.4 Hz), 3.54-3.57 (d, 1H, *J* = 14.4 Hz), 1.33-1.35 (d, 3H, *J* = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 145.1, 141.8, 128.5, 127.1, 126.8, 110.1, 106.8, 57.1, 44.05, 24.4; Anal. Calcd for C₁₃H₁₅NO: C, 77.58; H, 7.51; N, 6.96. found: C, 77.56; H, 7.37; N, 6.98. MS (EI⁺) m/z = 201, 196, 186, 105, 96, 91, 81, 76, 53; GC-MS retention time Rt = 11.31 min.

(S)-N-(Furan-3-ylmethyl)-1-phenylethanamine (5n): yellow oil; $[\alpha]^{24}_D$ -35.5 (*c* 0.020, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.34 (m, 7H), 6.33 (s, 1H), 3.77-3.82 (q, 1H, *J* = 6.4 Hz), 3.47 (s, 2H), 1.34-1.35 (d, 3H, *J* =

6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 143.1, 139.8, 128.5, 127.0, 126.7, 124.2, 110.5, 57.5, 42.1, 24.4; Anal. Calcd for C₁₃H₁₅NO: C, 77.58; H, 7.51; N, 6.96. found: C, 77.42; H, 7.45; N, 6.99. MS (EI⁺) m/z = 200, 186, 120, 105, 96, 81, 53; GC-MS retention time Rt = 8.70 min.

(S)-2,2-Dimethyl-N-(1-phenylethyl)propan-1-amine (50):^{S9} yellow oil; $[\alpha]^{24}_D$ -55.6 (*c* 1.00, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.29-7.33 (m, 4H), 7.20-7.24 (m, 1H), 3.68-3.72 (q, 1H, *J* = 6.5 Hz), 2.25-2.27 (d, 1H, *J* = 11 Hz), 2.12-2.14 (d, 1H, *J* = 11 Hz), 1.32-1.33 (d, 3H, *J* = 6.5 Hz), 0.88 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 146.7, 128.4, 126.7, 60.2, 59.1, 31.5, 27.9, 25.1; Anal. Calcd for C₁₃H₁₅NO: C, 81.61; H, 11.06; N, 7.32. found: C, 81.63; H, 11.05; N, 7.35. MS (EI⁺) m/z = 191, 176, 134, 105, 91, 77; GC-MS retention time Rt = 10.11 min.

(S)-2-Methyl-N-(1-phenylethyl)propan-1-amine (5p):^{S10} yellow oil; $[\alpha]^{24}_{D}$ -56.2 (*c* 1.00, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.34 (m, 4H), 7.21-7.25 (m, 1H), 3.71-3.75 (q, 1H, *J* = 6.5 Hz), 2.32-2.35 (d of d, 1H, *J* = 11, 5, 6.5 Hz), 2.19-2.23 (d of d, 1H, *J* = 11.5, 7.5 Hz), 1.66-1.74 (heptet, 1H, *J* = 7.0 Hz), 1.34-1.35 (d, 3H, *J* = 6.5 Hz), 0.87-0.88(d of d, 6H, *J* = 6.5, 2.0 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 146.2, 128.5, 126.9, 126.7, 58.5, 56.0, 24.7, 20.9, 20.8; Anal. Calcd for C₁₃H₁₅NO: C, 81.30; H, 10.80; N, 7.90. found: C, 81.24; H, 10.71; N, 7.86. MS (EI⁺) m/z = 177, 162, 134, 105, 91, 77; GC-MS retention time Rt = 9.91 min.

(S)-N-(Cyclohexylmethyl)-1-phenylethanamine (5q): yellow oil; $[\alpha]^{24}_{D}$ -30.6 (*c* 1.00, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.35 (m, 4H), 7.21-7.24 (m, 1H), 3.70-3.74 (q, 1H, *J* = 6.5 Hz), 2.33-2.36 (d of d, 1H, *J* = 11.5, 6 Hz), 2.22-2.25 (d of d, 1H, *J* = 11.5, 7 Hz), 1.63-1.76 (m, 5H), 1.37-1.47 (m, 1H), 1.33-1.34 (d, 3H, *J* = 6.5 Hz), 1.09-1.30 (m 4H), 0.80-0.91 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 146.3, 128.5, 126.9, 126.7, 58.6, 54.8, 38.3, 31.7, 31.6, 26.8, 26.3, 26.2, 24.7; Anal. Calcd for C₁₃H₁₅NO: C, 82.70; H, 10.41; N, 6.89. found: C, 82.61; H, 10.44; N, 6.91. MS (EI⁺) m/z = 203, 188, 134, 105, 91, 79, 41; GC-MS retention time Rt = 9.23 min.

(S)-N-(Cyclopentylmethyl)-1-phenylethanamine (5r): yellow oil; $[\alpha]^{24}_D$ -36.0 (*c* 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.35 (m, 5H), 3.72-3.77 (q, 1H, *J* = 6.8 Hz), 2.43-2.47 (q, 1H, *J* = 6.8, 11.2 Hz), 2.30-2.34 (q, 1H, *J* = 7.2, 11.2 Hz), 1.32-1.33 (sept, 1H, *J* = 7.2 Hz), 1.68-1.78 (m, 2H), 1.47-1.58 (m, 4H), 1.34-1.35 (d, 3H, *J*

= 6.8 Hz), 1.06-1.12 (m, 2H) ; ¹³C NMR (100 MHz, CDCl₃) δ 146.2, 128.5, 126.9, 126.7, 58.7, 53.9, 40.3, 31.0, 25.4, 24.7; Anal. Calcd for C₁₃H₁₅NO: C, 82.89; H, 10.67; N, 6.44. found: C, 82.76; H, 10.77; N, 6.56. MS (EI⁺) m/z = 217, 202, 134, 105, 91, 79, 55, 41; GC-MS retention time Rt = 9.94 min.

Fig. S3 TGA data of 2 : the temperature is increased by 10 °C per minute from 20 to 300 °C.

S22

Fig. S7 ¹H NMR Spectrum of 5a.

Operator: LWK VNMRS-400 "Varian-NMR"

La subsection de subsection

9

8

7

2.01

цi

գ. գ.

3.93 1.98 6

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.049 sec Width 6410.3 Hz 32 repetitions OBSERVE H1, 399.6646447 MHz DATA PROCESSING Resol. enhancement -0.0 Hz FT size 65536 Total time 1 min, 44 sec

5

. 1.14

եր երո

2.09

3

Ψ

5.92

2

1

ų ц

1.18 3.07 -0

ppin

A,

Fig. S8 13 C NMR Spectrum of **5a**.

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 24509.8 Hz 56 repetitions OBSERVE C13, 100.5127788 MHz DECOUPLE H1, 399.7344008 MHz Power 37 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 38 min, 21 sec

-

.

Amblent temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.049 sec Width 6410.3 Hz Single scan OBSERVE H1, 399.7324336 MHz DATA PROCESSING Resol. enhancement -0.0 Hz FT size 65536 Total time 0 min, 9 sec

Fig. S10¹³C NMR Spectrum of **5b.**

.....

Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 24509.8 Hz 60 repetitions OBSERVE C13, 100.5127833 MHz DECOUPLE H1, 399.7344008 MHz Power 37 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 38 min, 21 sec

Fig. S12 13 C NMR Spectrum of **5c.**

榆

Pulse Sequence: s2pul Solvent: cdc13 Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 24509.8 Hz 48 repetitions OBSERVE C13, 100.5127818 MHz DECOUPLE H1, 399.7344008 MHz Power 37 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 38 min, 21 sec

-

Fig. S14 13 C NMR Spectrum of **5d**.

.

Solvent: cdc13 Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 24509.8 Hz 72 repetitions OBSERVE C13, 100.5127900 MHz DECOUPLE H1, 399.7344008 MHz Power 37 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 38 min, 21 sec

Fig. S15 ¹H NMR Spectrum of 5e.

.

Solvent: cdcl3 Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.049 sec Width 6410.3 Hz Single scan OBSERVE H1, 399.7324555 MHz DATA PROCESSING Resol. enhancement -0.0 Hz FT size 65536 Total time 0 min, 9 sec

5e

Fig. S16 ¹³C NMR Spectrum of 5e.

.

Solvent: cdc13 Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 24508.8 Hz 64 repetitions OBSERVE C13, 100.5127833 MHz DECOUPLE H1, 399.7344008 MHz Power 37 dB continuously on WALT2-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 38 min, 21 sec

					sum of the second s							
220	200	180	160	140	120	100	80	6 0	4 0	20	0	bbw

Fig. S17 ¹H NMR Spectrum of 5f.

.

Solvent: cdc13 Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.049 sec Width 6410.3 Hz Single scan OBSERVE H1, 399.7324360 MHz DATA PROCESSING Resol. enhancement -0.0 Hz FT size 65536 Total time 0 min, 9 sec

.

Fig. S18 ¹³C NMR Spectrum of 5f.

-

Pulse Sequence: s2pul Solvent: cdcl3 Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 24509.8 Hz 48 repetitions OBSERVE C13, 100.5127915 MHz DECOUPLE H1, 399.7344008 MHz Power 37 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 38 min, 21 sec

S36

Fig. S20 ¹³C NMR Spectrum of 5g.

Solvent: cdcl3 Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 24509.8 Hz 40 repetitions OBSERVE C13, 100.5127878 MHz DECOUPLE H1, 399.7344008 MHz Power 37 dB continuously on WALT2-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 38 min, 21 sec

anti-tandana, malikanana kana tana tana ana	m mitallan fizzkazalaria wana u kana mama										
220	200	180	160	140	120	100	80 	60 	40	<u> </u>	0 ppm

Fig. S23 ¹H NMR Spectrum of 5i.

-10

Solvent: cdcl3 Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.049 sec Width 6410.3 Hz Single scan OBSERVE H1, 399.7324195 MHz DATA PROCESSING Resol. enhancement -0.0 Hz FT size 65536 Total time 0 min, 9 sec

11

10

9

8

لبن لبني 2.90 3.02 4.79

7

5i

5

6

H

4

دىبانبا 3.98 2.07 3

2

1

ب 3.00 -0

ppm

Fig. S24 ¹³C NMR Spectrum of 5i.

-

Solvent: cdcl3 Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 24509.8 Hz 80 repetitions OBSERVE C13, 100.5127908 MHz DECOUPLE H1, 399.7344008 MHz Power 37 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 38 min, 21 sec

5i

an and search in such that which we can also a state	Management and a state and a state of	nt-nit of an information of the memory and the				ala ala balanza. Desent a da aconsta en Microso e de						de serie la décidence
220	200	180	160	140	120	100	80	60	40	20	0	ppn

Fig. S25 ¹H NMR Spectrum of 5j.

:10

Solvent: cdc13 Ambient temperature Operator: LWK VMMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.049 sec Width 6410.3 Hz Single scan OBSERVE H1, 399.7324154 MHz DATA PROCESSING Resol. enhancement -0.0 Hz FT size 65536 Total time 0 min, 9 sec

11

10

9

8

Ź

ىباب 5.82

3.12

1

ppm

- 0

5

4

မှ မှ

1.00 2.09

З

2

1

ېب 3.16

9.29

6

Fig. S26 ¹³C NMR Spectrum of 5j.

Solvent: cdcl3 Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 24509.8 Hz 64 repetitions OBSERVE C13, 100.5127825 MHz DECOUPLE H1, 399.7344008 MHz Power 37 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 38 min, 21 sec

Fig. S27 ¹H NMR Spectrum of 5k.

.16

Solvent: cdcl3 Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.049 sec Width 6410.3 Hz Single scan OBSERVE H1, 399.7324150 MHz DATA PROCESSING Resol. enhancement -0.0 Hz FT size 65536 Total time 0 min, 9 sec

5k

Fig. S28 ¹³C NMR Spectrum of 5k.

.

Solvent: cdc13 Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 24509.8 Hz 60 repetitions DBSERVE Cl3, 100.5127938 MHz DECOUPLE H1, 399.7344008 MHz Power 37 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 38 min, 21 sec

5k

Fig. S29 ¹H NMR Spectrum of 5l.

.

Solvent: cdc13 Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.049 sec Width 6410.3 Hz Single scan OBSERVE H1, 399.7324565 MHz DATA PROCESSING Resol. enhancement -0.0 Hz FT size 65536 Total time 0 min, 9 sec

Fig. S30 ¹³C NMR Spectrum of 5l.

.8

Solvent: cdcl3 Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Puise 45.0 degrees Acq. time 1.300 sec Width 24509.8 Hz 40 repetitions OBSERVE C13, 100.5127960 MHz DECOUPLE H1, 399.7344008 MHz Power 37 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 38 min, 21 sec

51

Fig. S32 ¹³C NMR Spectrum of 5m.

Solvent: cdcl3 Ambient temperature Operator: LVK VNNRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 24509.8 Hz 104 repetitions OBSERVE C13, 100.5150803 MHz DECOUPLE H1, 399.7435210 MHz Power 37 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 38 min, 21 sec

Fig. S33 ¹H NMR Spectrum of 5n.

Solvent: cdc13 Ambient temperature * Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.049 sec Width 6410.3 Hz Single scan OBSERVE H1, 399.7324192 MHz DATA PROCESSING Resol. enhancement -0.0 Hz FT size 65536 Total time 0 min, 9 sec

5n

S50

Fig. S34 ¹³C NMR Spectrum of 5n.

-89

Ambient temperature Operator: LWK VNMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 24509.8 Hz 44 repetitions OBSERVE C13, 100.5127855 MHz DECOUPLE H1, 399.7344008 MHz Power 37 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 38 min, 21 sec

S56

Fig. S41¹H NMR Spectrum of **5r.**

sh:

Temp. 22.0 C / 295.1 K Operator: LWK VMMRS-400 "Varian-NMR"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.049 sec Width 6410.3 Hz 20 repetitions OBSERVE H1, 399.6646449 MHz DATA PROCESSING Resol. enhancement -0.0 Hz FT size 65536 Total time 1 min, 7 sec

References

- S1. (a) B. Lee, S. H. Kang, D. Kang, K. H. Lee, J. Cho, W. Nam, O. H. Han and N. H. Hur, *Chem. Comm.* 2011. 47, 11219. (b) B. Lee, K. H. Lee, J. Cho, W. Nam, O. H. Han and N. H. Hur, *Org. Lett.* 2011, 13, 6386.
- S2. G. M. Sheldrick, SHELXTL/PC Version 6.12 for Windows XP, Bruker AXS Inc., Madison, WI, 2001.
- S3. A. R. Todorov, V. B. Kurteva, R. P. Bontchev and N. G. Vassilev, Tetrahedron 2009, 65, 10339.
- S4. C. Guérin, V. Bellosta, G. Guillamot and J. Cossy, Org. Lett. 2011, 13, 3534.
- S5. J.-L. Vasse, V. Levacher, J. Bourguignon and G. Dupas, Tetrahedron 2003, 59, 4911.
- S6. N. Philippe, F. Denivet, J.-L. Vasse, J. S. –d. O. Santos, V. Levacher and G. Dupas, *Tetrahedron* 2003, **59**, 8049.
- S7. G. Huelgas, S. Bernès, M. Sánchez, L. Quintero, E. Juaristi, C. A. de Parrodi and P. J. Walsh, *Tetrahedron* 2007, 63, 12655.
- S8. V. O. Rogatchov, H. Bernsmann, P. Schwab, R. Fröhlich, B. Wibbeling and P. Metz, *Tetrahedron Lett.* 2002, 43, 4753.
- S9. E. Juaristi, P. Murer, and D. Seebach, Synthesis 1993, 1243.
- S10. D. A. Spivak, R. Simon and J. Campbell, Anal. Chim. Acta 2004, 504, 23.