RSC Advances

Electronic Supplementary Information

Flexible, nonenzymatic glucose biosensor based on Ni-coordinated, vertically aligned carbon nanotube arrays

Wan-Sun Kim,^{§,a,b} Gi-Ja Lee^{§,a,b} Je-Hwang Ryu,^a Kyu-Chang Park,^{c,*} and Hun-Kuk Park^{a,b*}

^a Department of Biomedical Engineering & Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, Seoul 130-701, Korea

^b Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul 130-701, Korea

^c Department of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701, Korea

[§] These authors contributed equally to this paper

* To whom correspondence should be addressed. E-mail: sigmoidus@khu.ac.kr, kyupark@khu.ac.kr

Fig. S1 Cyclic voltammograms of Ni/VCNTs/G electrode in 5.0 mM $K_3[Fe(CN)_6]$ containing 1.0 M KCl in 1.0 M phosphate buffered saline at different scan rates (10 – 200 mV·s⁻¹). Insets are the plots of peak current vs. scan rate^{1/2}. The electrochemical active surface area of the Ni/VCNTs/G was calculated by Randles–Sevcik equation:

$$I_p = 2.69 \times 10^5 A D^{1/2} n^{3/2} \gamma^{1/2} C$$

- I_p : the peak current (A)
- A : the electrochemically effective surface area of the working electrode (cm²)
- *D* : the diffusion coefficient $(7.64 \times 10^{-6} \text{ cm}^2 \cdot \text{s}^{-1} \text{ for } \text{K}_3[\text{Fe}(\text{CN})_6] \text{ at } 25 \text{ °C})$
- *n* : the number of electrons involved in the reaction
- γ : the scan rate (V·s⁻¹)
- C: the concentration of the reactant (mol·cm⁻³)

Sample	Concentration (mM)	RSD (%)	Added (mM)	Recovery (%)
1	0.959	1.50	0.1	98.3
2	2.329	3.28	0.1	99.9
3	3.622	3.34	0.1	101.2

Table S1. The detection of glucose in human serum samples. (from three separate experiments)