Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Journal Name

RSCPublishing

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Ultrasensitive Detection and Co-stability of Mercury(II) Ions Based on Amalgam Formation with Tween 20-Stabilized Silver Nanoparticles

Zhi Guo^{*a,b*}, Guiqiu Chen^{*,*a,b*}, Guangming Zeng^{*,*a,b*}, Zhongwu Li^{*a,b*}, Anwei Chen^{*c*}, Ming Yan^{*a,b*}, Lingzhi Liu^{*a,b*}, Daoyou Huang^{*d*}

Received 00th 2014, Accepted 00th 2014

DOI: 10.1039/x0xx00000x

^a College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China.

^b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.

^c College of Resources and Environment, Hunan Agricultural University, Changsha 410128, P.R. China.

^d Key laboratory for Agro-ecological Processes in Subtropical Region, Institution of Subtropical Agriculture, Chinese Academy of Science, Changsha 410125, P.R. China.

^{*}Corresponding Author. Phone: +86 731 88822829. Fax: +86 731 88823701. E-mail: gqchen@hnu.edu.cn (G.C.); zgming@hnu.edu.cn (G.Z.).

RSCPublishing

ARTICLE

EXPERIMENTAL SECTION

Synthesis of Bare AgNPs. A 59.5 ml solution containing 0.23 mM NaBH₄ was prepared in double distilled water and was stirred vigorously in ice bath. Upon addition of 0.48 ml, 23.5 mM AgNO₃ under stirring, the colour of solution turned yellow, indicating the formation of the AgNPs. After 3 h of additional stirring at room temperature, the soluble byproducts were removed by centrifugal ultrafiltration (molecular weight cutoff of 8000), and the AgNPs were washed with double distilled water.

References

- B. M. W. Fong, T. S. Siu, J. S. K. Lee, and S. J. Tam, *Anal. Toxicol.*, 2007, **31**, 281–287.
- (2) S. Gil, I. Lavilla, and C. Bendicho, Anal. Chem., 2006, 78, 6260-6264.
- (3) A. Ono, and H. Togashi, Angew. Chem., Int. Ed., 2004, 43, 4300– 4302.
- (4) M. Hollenstein, C. Hipolito, C. Lam, D. Dietrich, and D. M. Perrin, *Angew. Chem.*, 2008, **47**, 4346–4350.
- (5) M. Li, Q Y. Wang, X. D. Shi, L. A. Hornak, and N. Q. Wu, Anal. Chem., 2011, 83, 7061–7065.
- (6) L. Deng, X. Y. Ouyang, J. Y. Jin, C. Ma, Y. Jiang, J. Zheng, J. S. Li, Y. H. Li, W. H. Tan, and R. H. Yang, *Anal. Chem.*, 2013, **85**, 8594– 8600.

Figure S1. TEM of (A) Citrate-AgNPs. (B) Bare AgNPs. (C) Tween-20 AgNPs. (D) Ag/Hg amalgam.

Temperature (°C):	25.0			Ze	ta Runs:	30	
Count Rate (kcps):	0.0		Mea	surement Positio	on (mm):	2.00	
Cell Description:	Clear disposat	ole zeta cell		Att	enuator:	10	
			Mean (mV)	Area (%)	St Dev	r (mV)	
Zeta Potential (mV):	-14.6	Peak 1:	-14.6	100.0	16.3		
Zeta Deviation (mV):	16.3	Peak 2:	0.00	0.0	0.00		
Conductivity (mS/cm):	0.865	Peak 3:	0.00	0.0	0.00		
Result quality :	See result au	ality report					
300000 T ····			Λ				
0 100000				L			
0,		-100		0	10	0	200
			Apparent Zeta	Potential (mV)			
		E	Recor	1251:			

Figure S4. Gas chromatography analysis of (a) standard sample of Tween 20, (b) dialysis solution of Tween 20-AgNPs with 100 nM Hg^{2+} , (c) dialysis solution of Tween 20-AgNPs without Hg^{2+} .

Figure S5. Extinction spectra of solutions with and without the addition of 200 $nM\;Hg^{2*}$

Figure S6. Reduction of $Hg^{2+}(0, 5.0, 10.0 \ \mu M$ from left to right) at room temperature using citrate ions in the absence of Tween 20 AgNPs.

RSCPublishing

ARTICLE

Figure S7. EDX spectroscopy analysis of (A) Tween 20-AgNPs and (B) Ag/Hg amalgam formed in the presence of 100 nM Hg²⁺.

Fable S1. Elemental analysis results of Tween 20-AgNPs obtained by EDX spectra				
element	weight percentage	atom percentage		
СК	21.20	68.80		
ОК	1.10	2.60		
Na K	0.30	0.60		
Ag L	77.40	28.00		

This journal is	© The Rova	Society of	Chemistry	2013
This journal is	e me noyu	Jocicity of	chemistry	2013

ARTICLE

Table S2. Elemental analysis results of Ag/Hg amalgam obtained by EDX spectra				
element	weight percentage	atom percentage		
СК	21.20	68.80		
O K	1.10	2.60		
Na K	0.30	0.60		
Ag L	77.40	28.00		
Hg L	6.40	1.60		

Figure S8. XRD analysis of Ag/Hg amalgam in the presence of (A) 50.0 nM and (B) 500.0 nM Hg $^{2+}$.

detection methods	linear range (nM)	detection limit (nM)	reference
ICP-MS	10.0-500.0	0.65	1
AAS/cold vapor	а	0.5	2
T-Hg ²⁺ -T/FRET	40.0-100.0	40.0	3
T-Hg ²⁺ -T/DNAzyme	а	100.0	4
T-Hg ²⁺ -T/QDs	2.0-60.0	2.0	5
silver amalgamation	10.0-8000.0	2.6	6
silver amalgamation	0.5-120.0	0.31	this work

^aNo reported results.

Figure S10. The calibration curve of UV-Vis absorbance intensity against Hg^{2+} concentration in buffer samples. Inset shows the response linearity of the assay with Hg^{2+} concentrations at 0.5, 5.0, 20.0, 50.0, 80.0, 100.0, 120.0 and 200.0 nM.

ARTICLE

Table S4. Determination of Hg^{2+} (nM) in Water Samples Using the Proposed Method and AFS

sample	added	proposed method mean ^{<i>a</i>} \pm SD ^{<i>b</i>}	AFS mean ±SD
tap water 1	0	С	С
tap water 2	20.0	20.03 ±0.13	20.02 ± 0.07
tap water 3	50.0	49.99 ± 0.17	50.02 ± 0.22
tap water 4	100.0	103.98 ± 0.36	101.98 ± 0.20
spring water 1	0	<0.1	С
spring water 2	20.0	20.02 ± 0.19	20.03 ± 0.08
spring water 3	50.0	50.10 ± 0.22	50.05 ± 0.14
spring water 4	100.0	101.17 ± 0.23	101.39 ± 0.16
lake water 1	0	<0.1	< 0.1
lake water 2	20.0	20.04 ±0.21	20.06 ± 0.08
lake water 3	50.0	49.97 ±0.37	50.03 ± 0.35
lake water 4	100.0	101.26 ± 0.46	103.51 ± 0.12

^aMean of three determinations. ^bSD, standard deviation. ^cNo Hg²⁺ concentration could be detected.