Transition metal free synthesis of 2,4,6-trisubstituted pyrimidines via Cope-

type hydroamination of 1,4-diarylbuta-1,3-diynes

Raju Singha and Jayanta K. Ray*

Department of Chemistry, Indian Institute of Technology, Kharagpur721302, India

* Corresponding author. Tel.: +91 3222283326; fax: +91 3222282252.

E-mail address: jkray@chem.iitkgp.ernet.in (J. K. Ray).

Supplimentary Data

Table of contents	Page
Experimental section	2
General procedure for the synthesis of 1,4-diarylbuta-1,3-diynes (1a-h)	2
Characterization data for the compounds 1a-1h	3-4
General procedure for the synthesis of compound 1i	5-6
General procedure for the synthesis of 2,4,6-trisubstituted pyrimidines	6
Characterization data for the compounds 2a-2o	6-12
¹ H NMR and ¹³ C NMR spectra of compounds 2a-2o	13-27
¹⁹ F NMR spectra pf the compounds 2e, 2f, 2j, 2n	28-29

Experimental section:

General methods: High quality reagents (different alkynes and amidines) were purchased from Sigma Aldrich. Analytical grade commercial reagents and solvents were purified by standard procedures prior to use. Chromatographic purification was done with 60-120 mesh silica gel (Merck). For reaction monitoring, pre-coated silica gel 60 F254 sheets (Merck) were used. ¹H NMR (200 MHz) spectra were recorded on a BRUCKER-AC 200 MHz spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: 7.26 ppm). Data are reported as follows: chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant (Hz). ¹³C NMR (50 MHz) spectra were recorded on a BRUKER-AC 200 MHz. Spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance the internal as standard (deuterochloroform: 77.23 ppm). 19F NMR spectra were recorded on a BRUKER 400 MHz spectrometer. IR spectra were recorded on Perkin-Elmer IR73713 spectrophotometer. HRMS (ESI) spectra were taken using Waters Xevo G2 QTof mass spectrometer.

General procedure for the synthesis of 1,4-diarylbuta-1,3-diynes:

Arylacetylene (1.0 mmol), TMEDA (10 mol %), CuI (5 mol %) and Et₃N (3 mmol) were taken in round bottomed flask. Then 5 mL of acetone was added and the reaction mixture was stirred at room temperature under an air balloon for 24 h. After completion of the reaction, solvent was removed under reduced pressure and the crude product was purified by column chromatography using silica gel (60-120 mesh) and petroleum ether / ethylacetate as eluent.

1,4-diphenylbuta-1,3-diyne (1a):

White solid; MP 88-89 °C; Yield 88%; ¹H NMR (CDCl₃, 200 MHz) δ: 7.29-7.39 (6H, m), 7.52-7.57 (4H, m); ¹³C

NMR (CDCl₃, 50 MHz) δ: 76.6, 81.8, 121.9, 128.6, 129.4, 132.7. This compound has been reported in the literature.¹

1,4-dip-tolylbuta-1,3-diyne (1b):

White solid; MP 183-184 °C; Yield 91%; ¹H NMR Me $(CDCl_3, 200 \text{ MHz}) \delta: 2.37 (6H, s), 7.14 (4H, d, J =$ 7.8 Hz), 7.42 (4H, d, J = 7.8 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ : 21.8 (2C), 73.7 (2C), 81.8 (2C), 119.0 (2C), 129.4 (4C), 132.6 (4C), 139.7 (2C). This compound has been reported in

1,4-bis(3-chlorophenyl)buta-1,3-diyne (1c):

the literature.1

White solid; MP 73-74 °C; Yield 85%; ¹H NMR (CDCl₃, 200 MHz) δ: 7.23-7.44 (6H, m), 7.50-7.51 (2H, m); ¹³C NMR (CDCl₃, 50 MHz) δ: 74.9 (2 x C), 80.7 (2 x C),

123.5 (2 x C), 129.9 (4 x CH), 130.8 (2 x CH), 132.4 (2 x CH), 134.5 (2 x C). This compound has been reported in the literature.²

1,4-bis(4-tert-butylphenyl)buta-1,3-diyne (1d):

White solid; MP 195-196 °C; Yield 92%; ¹H NMR (CDCl₃, 200 MHz) δ: 1.35 (18H, s), 7.37-7.41 (4H,

m), 7.49-7.53 (4H, m); ¹³C NMR (CDCl₃, 50 MHz) δ: 31.3 (6 x CH₃), 35.1 (2 x C), 73.7 (2 x C), 81.7 (2 x C), 119.0 (2 x C), 125.6 (4 x CH), 132.4 (4 x CH), 152.7 (2 x C). This compound has been reported in the literature.²

1,4-bis(3-fluorophenyl)buta-1,3-diyne (1e):

White solid; MP 121-122 °C; Yield 93%; ¹H NMR in CDCl₃ (200 MHz) δ: 7.05-7.34 (8H, m); ¹³C NMR (CDCl₃, 50 MHz) δ : 74.6 (2 x C), 80.8 (2 x C, d, *J* = 3.5 Hz), 117.1 (2 x CH, d, *J* = 21.0 Hz), 119.4 (2 x CH, d, *J* = 23.0 Hz), 123.6 (2 x C, d, *J* = 9.5 Hz), 128.6 (2 x CH, d, *J* = 3.0 Hz), 130.3 (2 x CH, d, J = 8.5 Hz), 162.4 (2 x C, d, J = 246.0 Hz). This compound has been reported in the literature.³

1,4-bis(4-fluorophenyl)buta-1,3-divne (1f):

White solid; MP 194-195°C; Yield 94%; ¹H NMR (CDCl₃, 200 MHz) δ: 6.99-7.08 (4H, m), 7.48-7.55 (4H, m); ¹³C NMR (CDCl₃, 50 MHz) δ: 73.7 (2 x C), 80.6 (2 x C), 116.1 (4 x CH, d, *J* = 22.0 Hz), 118.0 (2 x C), 134.7 (4 x CH, d, J = 8.5 Hz), 163.3 (2 x CF, d, J = 250.0 Hz). This compound has been reported in the literature.¹

1,4-dim-tolylbuta-1,3-diyne (1g):

White solid; MP 68-69 °C; Yield 92%; ¹H NMR (CDCl₃, 200 MHz) δ: 2.43 (6H, s), 7.24-7.28 (4H, m), 7.43 (4H, s); ¹³C NMR (CDCl₃, 50 MHz) δ: 21.4 (2 x

CH₃), 73.9 (2 x C), 81.8 (2 x C), 121.8 (2 x C), 128.5 (2 x CH), 129.8 (2 x CH), 130.3 (2 x CH), 133.2 (2 x CH), 138.3 (2 x C). This compound has been reported in the literature.²

1,4-bis(4-methoxyphenyl)buta-1,3-diyne (1h):

Yellow solid; MP 141-142°C; Yield 93%; ¹H NMR (CDCl₃, 200 MHz) δ: 3.82 (6H, s), 7.46

 $(4H, d, J = 8.8 \text{ Hz}), 8.85 (4H, d, J = 8.8 \text{ Hz}); {}^{13}C \text{ NMR} (CDCl_3, 50 \text{ MHz}) \delta: 55.4 (2 \text{ x C}),$ 73.0 (2 x C), 81.3 (2 x C), 113.9, 114.2, 134.1, 160.3. This compound has been reported in the literature.¹

General procedure for the synthesis of 1-(buta-1,3-diynyl)-4-methylbenzene (1i):

The compound (1i) was synthesized according to the literature reported procedure as in ref 4.

The 1-ethynyl-4-methylbenzene (A) (2 mmol) was taken in a round bottomed flask and then 10 mL of acetone was added to it. Then NBS (1.1 equiv.) and AgNO₃ (0.1 equiv.) were added to the solution and the reaction mixture was stirred at room temperature for 1h. After completion of the reaction, the solvent was removed under reduced pressure and then passed through a pad of silica-gel with n-hexane as eluent. The filtrate was collected and evaporated under reduced pressure to afford the compound 1-(2-bromoethynyl)-4-methylbenzene (B) as colourless liquid in 94% yield.

Then the compound B, CuI (5 mol %) and $PdCl_2(PPh_3)_2$ (5 mol%) were taken in a two-neck round bottomed flask and the flask was filled with argon. Then 15 mL of Et₃N was added and the mixture was degassed with argon for 10 min. Then trimethylsilylacetyline (2 equiv.) was added through a syringe and the reaction mixture was stirred at 55 °C for 6h. After completion of the reaction, the solvent was removed under reduced pressure and the residue was purified by a column chromatography using hexane as eluent to afford the compound C as yellowish liquid.

Then the compound **C** and K_2CO_3 (6 equiv.) were taken in a round bottomed flask. Then 20 mL of MeOH and 20 mL of DCM were added and the reaction mixture was stirred at room temperature for 1h. After completion of the reaction, the solvent was removed under reduced

pressure and the crude product was purified by column chromatography using hexane as eluent to get the compound 1-(buta-1,3-diynyl)-4-methylbenzene (1i) as colourless liquid in 96% yield.; ¹H NMR (CDCl₃, 200 MHz) δ : 2.41 (3H, s), 2.51 (1H, s), 7.18 (2H, d, J = 8.2 Hz), 7.46 (2H, d, J = 8.2 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ : 21.8 (CH₃), 68.5 (C), 71.2 (CH), 73.1 (C), 75.8 (C), 118.0 (C), 129.4 (2 x CH), 132.9 (2 x CH), 140.1 (C).

General procedure for the synthesis of 2,4,6-trisubstitued pyrimidines:

The 1,4-diarylbuta-1,3-diyne (0.5 mmol), acetamidine/benzamidine hydrochloride (1.5 mmol) were taken in a round bottomed flask fitted with a condenser and then triethyl amine (1.5 mmol) and dimethyl sulfoxide (5 mL) were added. Then the reaction mixture was heated at 160 °C under air balloon for 24 h. Then the reaction mixture was cooled to room temperature, diluted with water and extracted with ethyl acetate (3×20 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and then evaporated under reduced pressure. The crude product was then purified by column chromatography using silica gel (60-120 mesh) and petroleum ether/ethylacetate as eluent.

Characterization data for the compounds 2a-2n:

4-benzyl-2-methyl-6-phenylpyrimidine (2a):

Yellow liquid; Yield 65%; ¹H NMR (CDCl₃, 200 MHz) δ: 2.81 (3H, s), 4.16 (2H, s), 7.30-7.35 (5H, m), 7.44-7.47 (4H, m), 7.94-7.99 (2H, m); ¹³C NMR (CDCl₃, 50 MHz) δ: 26.3 (CH₃), 44.3 (CH₂), 113.3 (CH),

127.1 (CH), 127.5 (2 x CH), 129.0 (2 x CH), 129.1 (2 x CH), 129.5 (2 x CH), 130.9 (CH), 137.2 (C), 137.7 (C), 164.9 (C), 168.0 (C), 169.7 (C); **HRMS** (ESI) calculated for C₁₈H₁₇N₂ [M + H]⁺: 261.1386; found: 261.1381.

2-methyl-4-(4-methylbenzyl)-6-*p*-tolylpyrimidine (2b):

Yellow liquid; Yield 62%; ¹H NMR (CDCl₃, 200 MHz) δ: 2.34 (3H, s), 2.39 (3H, s), 2.79 (3H, s), 4.11 (2H, s), 7.12-7.18 (4H, m), 7.23-7.27 (3H, m), 7.88 (2H, d, *J* = 8.2 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ:

21.3 (CH₃), 21.6 (CH₃), 26.2 (CH₃), 43.8 (CH₂), 112.9 (CH), 127.4 (2 x CH), 129.4 (2 x CH),
129.7 (2 x CH), 129.8 (2 x CH), 134.4 (C), 134.7 (C), 136.7 (C), 141.4 (C), 164.9 (C), 167.8 (C), 169.7 (C). HRMS (ESI) calculated for C₂₀H₂₁N₂ [M + H]⁺: 289.1699; found: 289.1702.

4-(3-chlorobrnzyl)-6-(3-chlorophenyl)-2-methylpyrimidine (2c):

Yellow solid; MP 88-90 °C; Yield 78%; ¹H NMR (CDCl₃, 200 MHz) δ : 2.80 (3H, s), 4.09 (2H, s), 7.16-7.28 (5H, m), 7.33-7.45 (2H, m), 7.81-7.88 (1H, m), 8.01 (1H, d, J = 1.4

Hz); ¹³C NMR (CDCl₃, 50 MHz) δ: 26.4 (CH₃), 44.1 (CH₂), 113.2 (CH), 125.4 (CH), 127.3 (CH), 127.5 (2 x CH), 129.5 (CH), 130.2 (CH), 130.3 (CH), 130.8 (CH), 134.7 (C), 135.2 (C), 139.0 (C), 139.7 (C), 163.2 (C), 168.6 (C), 169.3 (C); **IR** (KBr): 3061, 3013, 2959, 2927, 1570, 1542 cm ⁻¹; **HRMS** (ESI) calculated for $C_{18}H_{15}Cl_2N_2$ [M + H]⁺ : 329.0607; found: 329.0601; **Crystal data**: CCDC no 990434; Formula $C_{18}H_{14}Cl_2N_2$; Space group P212121; Unit cell parameters a 4.2028(7) b 11.833(2) c 31.589(5), α 90 β 90 γ 90.

4-(4-*tert*-butylbenzyl)-6-(4-*tert*-butylphenyl)-2-methylpyrimidine (2d):

Yellow liquid; Yield 54%; ¹H NMR (CDCl₃, 200 MHz) δ: 1.32 (9H, s), 1.34 (9H, s), 2.81 (3H, s), 4.13 (2H, s), 7.22-7.28 (3H, m), 7.36 (2H, d, *J* = 8.4 Hz), 7.48 (2H, d, *J* = 8.6 Hz), 7.91 (2H, d, *J* = 8.6 Hz); ¹³C **NMR** (CDCl₃, 50 MHz) δ : 26.2 (CH₃), 31.4 (3 x CH₃), 31.6 (3 x CH₃), 34.7 (C), 35.1 (C), 43.7 (CH₂), 113.2 (CH), 125.9 (2 x CH), 126.1 (2 x CH), 127.3 (2 x CH), 129.1 (2 x CH), 134.5 (C), 134.7 (C), 149.9 (C), 154.5 (C), 164.9 (C), 167.8 (C), 169.6 (C); **HRMS** (ESI) calculated for C₂₆H₃₃N₂ [M + H]⁺: 373.2638; found: 373.2641.

4-(3-fluorobenzyl)-6-(3-fluorophenyl)-2-methylpyrimidine (2e):

Yellow solid, MP 66-67 °C; Yield 81 %; ¹H NMR (CDCl₃, 200 MHz) δ: 2.80 (3H, s), 4.14 (2H, s), 6.93-7.17 (4H, m), 7.20-7.48 (3H, m), 7.73-7.77 (2H, m); ¹³C NMR in CDCl₃ (50 MHz) δ: 26.4 (CH₃), 44.1 (CH₂, d, *J* = 1.5 Hz), 113.2

(CH), 114.1 (CH, d, J = 20.9 Hz), 114.4 (CH, d, J = 15.5 Hz), 116.37 (CH, d, J = 21.2 Hz), 117.8 (CH, d, J = 21.2 Hz), 123.0 (CH, d, J = 3.0 Hz), 125.1 (CH, d, J = 3.0 Hz), 130.5 (CH), 130.6 (CH, d, J = 15.0 Hz), 139.5 (C, d, J = 7.5 Hz), 140.2 (C, d, J = 7.0 Hz), 163.2 (CF, d, J = 245.0 Hz), 163.4 (C), 163.5 (CF, d, J = 245.0 Hz), 168.6 (C), 169.5 (C); ¹⁹F NMR (CDCl3, 376 MHz) δ : -112.2, -112.7; HRMS (ESI) calculated for C₁₈H₁₅F₂N₂ [M + H]⁺: 297.1198; found: 297.1187.

4-(4-fluorobenzyl)-6-(4-fluorophenyl)-2-methylpyrimidine(2f):

Yellow solid; MP 52-53 °C; Yield 75 %; ¹H NMR (CDCl₃, 200 MHz) δ: 2.78 (3H, s), 4.10 (2H, s), 6.98-7.30 (7H, m), 7.96-8.03 (2H, m); ¹³C NMR (CDCl₃, 50 MHz) δ: 26.4 (CH₃), 43.7 (CH₂), 112.7 (CH), 115.8 (2 x CH, d, *J*

= 21.0 Hz), 116.1 (2 x CH, d, *J* = 21.5 Hz), 129.4 (2 x CH, d, *J* = 9.0 Hz), 130.9 (2 x CH, d, *J* = 8.0 Hz), 133.4 (C, d, *J* = 3.0 Hz), 133.6 (C, d, *J* = 3.0 Hz), 162.0 (CF, d, *J* = 244.0 Hz), 163.5 (C), 164.7 (CF, d, *J* = 249.0 Hz), 168.4 (C), 169.8 (C); ¹⁹F NMR (CDCl3, 376 MHz) δ:

-109.9, -115.9; **HRMS** (ESI) calculated for $C_{18}H_{15}F_2N_2$ [M + H]⁺ : 297.1198; found: 297.1188.

4-benzyl-2,6-diphenylpyrimidine (2g):

Yellow liquid; Yield 63%; ¹H NMR (CDCl₃ 200 MHz) δ: 4.25 (2H, s), 7.30-7.38 (6H, m), 7.48-7.57 (6H, m), 8.12-8.17 (2H, m), 8.60-8.67 (2H, m); ¹³C NMR (CDCl₃ 50 MHz) δ: 44.7 (CH₂), 113.8 (CH), 127.0 (CH), 127.5 (2 x CH), 128.7 (4 x CH), 128.9 (2 x CH), 129.0 (2 x CH), 129.6 (2 x CH), 130.8

(CH), 130.9 (CH), 137.5 (C), 138.2 (2 x C), 164.5 (2 x C), 170.2 (C); HRMS (ESI) calculated for $C_{23}H_{19}N_2$ [M + H]⁺: 323.1543; found: 323.1536.

4-(4-methylbenzyl)-2-phenyl-6-*p*-tolylpyrimidine (2h):

Yellow liquid; Yield 60%; ¹H NMR (CDCl₃, 200 MHz) δ: 2.35 (3H, s), 2.42 (3H, s), 4.19 (2H, s), 7.14-7.18 (1H, m), 7.27-7.35 (4H, m), 7.49-7.52 (5H, m), 8.05 (2H, d, J = 8.2 Hz), 8.59-8.68 (2H, m); ¹³C NMR (CDCl₃ 50

MHz) δ: 21.3 (CH₃), 21.6 (CH₃), 44.4 (CH₂), 113.4 (CH), 127.4 (2 x CH), 128.6 (4 x CH), 129.4 (2 x CH), 129.6 (2 x CH), 129.7 (2 x CH), 130.7 (CH), 134.7 (C), 135.2 (C), 136.5 (C), 138.4 (C), 141.2 (C), 164.3 (C), 164.4 (C), 170.3 (C); HRMS (ESI) calculated for C₂₅H₂₃N₂ [M + H]⁺: 351.1856; found: 351.1853.

4-(3-methylbenzyl)-2-phenyl-6-*m*-tolylpyrimidine (2i):

Yellow liquid; Yield 61%; ¹H NMR (CDCl₃ 200 MHz) δ: 2.35 (3H, s), 2.46 (3H, s), 4.23 (2H, s), 7.07-7.22 (3H, m), 7.29-7.42 (3H, m), 7.50-7.62 (4H, m), 7.89-7.98 (2H, m),

8.60-8.68 (2H, m); ¹³C NMR (CDCl₃ 50 MHz) δ: 21.6 (CH₃), 21.8 (CH₃), 44.6 (CH₂), 114.0

(CH), 124.7 (CH), 126.6 (CH), 127.8 (CH), 128.1 (CH), 128.7 (2 x CH), 128.8 (2 x CH), 128.9 (CH), 129.1 (CH), 130.3 (CH), 130.8 (CH), 131.8 (CH), 133.0 (C), 137.4 (C), 138.1 (C), 138.6 (C), 138.8 (C), 164.3 (C), 164.7 (C), 170.2 (C); HRMS (ESI) calculated for C₂₅H₂₃N₂ [M + H]⁺: 351.1856; found: 351.1852.

4-(4-fluorobenzyl)-6-(4-fluorophenyl)-2-phenylpyrimidine (2j):

Yellow solid; MP 58-59 °C; Yield 82%; ¹H NMR (CDCl₃, 200 MHz) δ: 4.20 (2H, s), 7.03-7.24 (4H, m), 7.31-7.40 (3H, m), 7.53-7.56 (3H, m), 8.13-8.23 (2H, m), 8.60-8.71 (2H, m); ¹³C NMR in CDCl₃ (50 MHz) δ: 43.8

(CH₂), 113.1 (CH), 115.7 (2 x CH, d, J = 21.5 Hz), 116.0 (2 x CH, d, J = 21.5 Hz), 128.6 (2 x CH), 128.7 (2 x CH), 129.4 (2 x CH, d, J = 9.0 Hz), 130.9 (CH), 131.0 (2 x CH, d, J = 8.5 Hz), 133.4 (C, d, J = 3.0 Hz), 133.8 (C, d, J = 3.5 Hz), 138.0 (C), 162.0 (CF, d, J = 245.0 Hz), 163.3 (C), 164.5(C), 164.7 (CF, d, J = 249.5 Hz), 170.1 (C); ¹⁹F NMR (CDC13, 376 MHz) δ : -110.7, -116.9; **IR** (KBr): 3067, 3037, 2959, 2929, 1579, 1539 cm⁻¹; **HRMS** (ESI) calculated for C₂₃H₁₇F₂N₂ [M + H]⁺: 359.1354 ; found: 359.1348.

4-(3-chlorobenzyl)-6-(3-chlorophenyl)-2-phenylpyrimidine (2k):

Yellow solid, MP 62-64 °C; Yield 80%; ¹H NMR (CDCl₃, 200 MHz) δ: 4.25 (2H, s), 7.30-7.32 (3H, m), 7.39-7.64 (7H, m), 8.02-8.07 (1H, m), 8.22 (1H, d, *J* = 1.8 Hz), 8.63-8.67

(2H, m); ¹³C NMR (CDCl₃, 50 MHz) δ : 44.3 (CH₂), 113.8 (CH), 125.5 (CH), 127.3 (CH), 127.6 (CH), 127.7 (CH), 128.7 (2 x CH), 128.8 (2 x CH), 129.6 (CH), 130.2 (CH), 130.3 (CH), 131.0 (CH), 131.1 (CH), 134.7 (C), 135.3 (C), 137.8 (C), 139.1 (C), 140.0 (C), 163.2 (C), 164.7 (C), 169.7 (C). **IR** (KBr): 3066, 3037, 2959, 2934, 1567, 1536 cm⁻¹; **HRMS** (ESI) calculated for C₂₃H₁₇Cl₂N₂ [M + H]⁺: 391.0763; found: 391.0758.

4-(3-fluorobenzyl)-6-(3-fluorophenyl)-2-phenylpyrimidine (2l):

Yellow solid; MP 62-63 °C; Yield 88 %; ¹H NMR (CDCl₃, 200 MHz) δ: 4.23 (2H, s), 6.97-7.01 (1H, m), 7.11-7.26 (3H, m), 7.29-7.40 (2H, m), 7.45-7.57 (4H, m), 7.89-7.98 (2H, m),

8.63-8.68 (2H, m); ¹³C NMR (CDCl₃, 50 MHz) δ : 44.3 (CH₂, d, J = 1.5 Hz), 113.66 (CH), 114.0 (CH, d, J = 20.7 Hz), 114.3 (CH, d, J = 22.8 Hz), 116.4 (CH, d, J = 21.0 Hz), 117.8 (CH, d, J = 21.5 Hz), 122.9 (CH, d, J = 2.7 Hz), 125.1 (CH, d, J = 2.8 Hz), 128.6 (2 x CH), 128.7 (2 x CH), 130.4 (CH), 130.5 (CH, d, J = 15.5 Hz), 130.9 (CH), 137.9 (C), 139.6 (C, d, J = 7.5 Hz), 140.4 (C, d, J = 7.0 Hz), 163.1 (C, d, J = 2.5 Hz), 163.2 (CF, d, J = 244.5 Hz), 163.4 (CF, d, J = 244.5 Hz), 164.6 (C), 169.7 (C); **IR** (KBr): 3061, 3031, 2965, 2935, 1570, 1542 cm⁻¹; **HRMS** (ESI) calculated for $C_{23}H_{17}F_2N_2$ [M + H]⁺: 359.1354 ; found: 359.1346.

4-(4-methoxybenzyl)-6-(4-methoxyphenyl)-2-phenylpyrimidine (2m):

Semi solid; Yield 46%; ¹H NMR (CDCl₃, 200 MHz) δ: 3.81 (3H, s), 3.88 (3H, s), 4.18 (2H, s), 6.89 (2H, d, J = 8.6 Hz), 7.00 (2H, d, J = 8.8 Hz), 7.27-7.32 $(\overline{3H}, m)$, 7.49-7.52 (3H, m), 8.12 (2H, d, J = 8.8 Hz), 8.58-8.63 (2H, m); ¹³C NMR (CDCl₃) 50 MHz) δ: 43.7 (CH₂), 55.5 (CH₃), 55.6 (CH₃), 112.8 (CH), 114.4 (4 x CH), 128.7 (4 x CH), 129.0 (2 x CH), 129.8 (C), 130.3 (C), 130.6 (2 x CH), 130.7 (CH), 138.2 (C), 158.7 (C), 162.1 (C), 164.0 (C), 164.2 (C), 170.3 (C); **HRMS** (ESI) calculated for $C_{25}H_{23}N_2O_2$ [M + H]⁺ : 383.1754; found: 383.1751.

4-(3-fluorobenzyl)-6-(3-fluorophenyl)pyrimidine (2n):

Yellow liquid; Yield 62 %; ¹H NMR (CDCl₃, 200 MHz) δ: 4.17 (2H, s), 6.93-7.24 (4H, m), 7.29-7.51 (3H, s), 7.74-7.80

(2H, m), 9.20 (1H, d, J = 1.2 Hz); ¹³C NMR in CDCl₃ (50 MHz) δ : 44.2 (CH₂), 114.1 (CH, d, J = 5.5 Hz), 114.5 (CH, d, J = 7.5 Hz), 116.3 (CH),116.4 (CH, d, J = 21.5 Hz), 118.1 (CH, d, J = 21.0 Hz), 122.9 (CH, d, J = 3.0 Hz), 125.1 (CH, d, J = 3.0 Hz), 130.6 (CH), 130.7 (CH, d, J = 17.0 Hz), 139.1 (C, d, J = 7.5 Hz), 140.0 (C, d, J = 7.5 Hz), 159.2 (CH), 163.2 (CF, d, J = 245.0 Hz), 163.3 (C, d, J = 3.0 Hz), 163.5 (CF, d, J = 245.0 Hz), 169.6 (C); ¹⁹F NMR (CDCl3, 376 MHz) δ : -113.0, -113.5; HRMS (ESI) calculated for C₁₇H₁₃F₂N₂ [M + H]⁺ : 283.1041 ; found: 283.1048.

4-(4-methylbenzyl)-2-phenylpyrimidine (2o):

Yellow liquid; Yield 76%; ¹**H NMR** (CDCl₃, 200 MHz) δ: 2.36 (3H, s), 4.15 (2H, s), 6.94 (1H, d, *J* = 5.0 Hz), 7.14-7.26 (4H, m), 7.49-7.53 (3H, m), 8.49-8.53 (2H, m), 8.64 (1H, d, *J* = 5.0 Hz);

¹³C NMR (CDCl₃, 50 MHz) δ : 21.2 (CH₃), 44.2 (CH₂), 118.2 (CH), 128.4 (2 x CH), 128.7 (2 x CH), 129.4 (2 x CH), 129.6 (2 x CH), 130.7 (CH), 134.8 (C), 136.6 (C), 138.0 (C), 157.4 (CH), 164.5 (C), 170.0 (C). **HRMS** (ESI) calculated for C₁₈H₁₇N₂ [M + H]⁺ : 261.1386; found: 261.1378.

References:

- 1. S. Zhang, X. Liu and T. Wang, Adv. Synth. Catal. 2011, 353, 1463.
- 2. Z. Chen, H. Jiang, A. Wang and S. Yang, J. Org. Chem. 2010, 75, 6700.
- 3. X. Ruian, Y. Ruiya, C. Mingzhong, Eurr. J. Org. Chem. 2012, 22, 4178.
- 4. Y. X. Xue, Y. Y. Zhu, L. M. Gao, X. Y. He, N. Liu, W. Y. Zhang, J. Yin, Y. Ding, H. Zhou, and Z. Q. Wu, *J. Am. Chem. Soc.*, 2014, **136**, 4706.

 $^1\mathrm{H}\,\mathrm{NMR}$ of compound 2a

¹³C NMR of compound 2a

¹H NMR of compound 2b

¹³C NMR of compound 2b

 $^1\mathrm{H}\,\mathrm{NMR}$ of compound 2c

¹³C NMR of compound 2c

¹H NMR of compound 2d

¹³C NMR of compound 2d

¹H NMR of compound 2e

¹³C NMR of compound 2e

$^1\mathrm{H}\,\mathrm{NMR}$ of compound 2f

¹³C NMR of compound 2f

 $^1\mathrm{H}\,\mathrm{NMR}$ of compound 2g

¹³C NMR of compound 2g

¹H NMR of compound 2h

¹³C NMR of compound 2h

 $^1\mathrm{H}\,\mathrm{NMR}$ of compound 2i

¹³C NMR of compound 2i

$^1\mathrm{H}\,\mathrm{NMR}$ of compound 2j

¹³C NMR of compound 2j

 $^1\mathrm{H}\,\mathrm{NMR}$ of compound $2\mathrm{k}$

¹³C NMR of compound 2k

¹H NMR of compound 21

¹³C NMR of compound 21

 $^1\mathrm{H}\,\mathrm{NMR}$ of compound 2m

¹³C NMR of compound 2m

¹H NMR of compound 2n

¹³C NMR of compound 2m

 $^1\mathrm{H}\,\mathrm{NMR}$ of compound 20

¹³C NMR of compound 20

¹⁹F NMR of compound 2e

 $^{19}\mathrm{F}\ \mathrm{NMR}$ of compound 2f

¹⁹F NMR of compound 2j

¹⁹F NMR of compound 2n

