Supporting Information

Recyclable Bi₂WO₆-nanoparticle mediated one-pot multicomponent reactions in aqueous medium at room temperature^{†#}

BanothPaplal,^a S. Nagaraju,^a Palakollu Veerabhadraiah,^b Kodam Sujatha,^a Sriram Kanvah,^b B. Vijaya Kumar^{c*} and Dhurke Kashinath^{a*} ^aDepartment of Chemistry, National Institute of Technology, Warangal-506 004, India e-mail: kashinath@nitw.ac.in; kashinath.dhurke@gmail.com Tel. +91-870-2462677; FAX No. +91-870-2459547

^bDepartment of Chemistry, Indian Institute of Technology, Gandhinagar, Ahmedabad, India ^cDepartment of Chemistry, Nizam College, Osmania University, Hyderabad, India

Preparation of BiVO₄, Bi₂O₃ and Bi₂WO₆:¹

The chemicals $(Bi(NO_3)_3.5H_2O, Na_2WO_6 \text{ and } V_2O_5)$ were analytical grade reagents (purchased from Sigma-Aldrich). A Bismuth stock solution prepared with a concentration of 0.2 mol L⁻¹ by dissolving Bi(NO₃)₃.5H₂O in 1.5 mol L⁻¹ nitric acid.

BiVO₄: 25 mL of bismuth stock solution was diluted with 25 mL of deionized water, and added Bi/V=1 molar ratio of V_2O_5 and the mixture was stirred for 3 days at RT. The solid was filtered and washed with water (4 X 10 mL) and dried.

 Bi_2O_3 : Conc.NaOH was added to 15 mL of Bismuth stock solution till the pH of 11.5. The solution was stirred at RT for 24h, filtered, washed with double distilled water for (4X 10 mL) and dried.

Bi₂WO₆: Tungstate solution was prepared by dissolving sodium tungstate in HNO₃ (1.5 molL⁻¹). Bismuth and tungstate stock solution was mixed with Bi/W = 2 (in the molar ratio of Bi/W = 2), this solution was transferred in to a Teflon lined autoclave and then heated at 200°C for 24h under autogenous pressure. After 24h, autoclave was cooled to RT and the compound obtained was washed with deionized water (4x10 mL) and dried.

Figure-1. Powder XRD graph of Bi_2WO_6 (Before the reaction and after the reaction up to 5 cycles)

General procedure for the synthesis of Dihydropyridines (4-17):

To a mixture of aldehyde (1 equiv), and Ethyl acetoacetate (2 equiv) in water (3-5 mL) was added NH_4OAc (2.5 equiv) followed by Bi_2WO_6 (5 mol%). The mixture was stirred at RT for 60 min. After completion of the reaction (monitored by TLC), the contents were transferred to separating funnel and extracted with EtOAc (3X 10 mL). The combined organic layers were washed with brine, water, dried over Na_2SO_4 and filtered. Evaporation of the solvent gave the crude product which was purified by recrystallization using EtOH as solvent (Some of the derivatives were purified using

silica gel column chromatography. Elution of the column with Petroleum ether:EtOAc mixture gave the desired dihydropyridines **4-17**).

Product No	Measured MP °C	Reported MP °C
6	125-128	130 ^{2b}
7	158-160	156–158 ^{2a}
8	238-240	240-242 ² c
9	159-161	158–160 ^{2a}
10	228-230	227-230 ² c
11	148-150	145–147 ^{2a}
12	162-164	162–164 ^{2a}
13	132-133	130–132 ^{2a}
15	160-162	160–162 ^{2a}

Table-1. Comparison of physical data (MP) of the known compounds

General procedure for the synthesis of polyhydroquinolones (19-31):

To a mixture of aldehyde (1 equiv), ethyl acetoacetate (1equiv) and dimedone (1 equiv) in water (3-5 mL) was added NH₄OAc (2.5 equiv) followed by Bi_2WO_6 (5 mol%). The mixture was stirred at RT for 10 min. After completion of the reaction (monitored by TLC), the contents were transferred to separating funnel and extracted with EtOAc (3X 10 mL). The combined organic layers were washed with brine, water, dried over Na₂SO₄ and filtered. Evaporation of the solvent gave the crude product

which was purified by recrystallization using EtOH as solvent(Some of the derivatives were purified using silica gel column chromatography. Elution of the column with Petroleum ether:EtOAc mixture gave the desired products).

Product No	Measured MP °C	Reported MP °C
19	178-180	174–176 ^{3a}
22	205-206	202–204 ^{3a}
23	234-235	231–233 ^{3a}
24	250-254	255–257 ^{3a}
25	233-235	230–232 ^{3a}
26	240-245	245-247 ^{3a}
27	251-253	252–253 ^{3a}
28	242-246	244-246 ^{3a}
30	246-248	246–248 ^{3a}

Table-2. Comparison of physical data (MP) of the known compounds

General procedure for the synthesis of 4H-chromenederivatives (33-45):

To a mixture of aldehyde (1 equiv), and dimedone (1 equiv) in water (3-5 mL) was added melanonitrile (1 equiv) followed by Bi_2WO_6 (5 mol%). The mixture was stirred at RT for 10 min. After completion of the reaction (monitored by TLC), the contents were transferred to separating funnel and extracted with EtOAc (3X 10 mL). The combined organic layers were washed with brine, water, dried over Na₂SO₄ and

filtered. Evaporation of the solvent gave the crude product which was purified by recrystallization using EtOH as solvent (Some of the derivatives were purified using silica gel column chromatography. Elution of the column with Petroleum ether:EtOAc mixture gave the desired products).

Product No.	Measured MP °C	Reported MP °C
33	214-216	210-212 ^{4a}
34	190-192	
36	228-230	224–226 ^{4a}
37	210-212	212–215 ^{4a}
38	193-195	190–192 ^{4a}
39	208-210	206–208 ^{4a}
40	207-210	210–212 ^{4a}
41	215-218	216-218 ^{4a}
42	183-184	186-189 ^{4a}
44	210-213	200–204 ^{4a}

Table-3. Comparison of physical data (MP) of the known compounds

General procedure for the synthesis of 2-amino-4H-benzo[b]pyran derivatives (47-60):

To a mixture of aldehyde (1 equiv), and β -naphthol (1 equiv) in water (3-5 mL) was added melanonitrile (1 equiv) followed by Bi₂WO₆ (5 mol%). The mixture was stirred at RT for 20 min. After completion of the reaction (monitored by TLC), the contents

were transferred to separating funnel and extracted with EtOAc (3X 10 mL). The combined organic layers were washed with brine, water, dried over Na_2SO_4 and filtered. Evaporation of the solvent gave the crude product which was purified by recrystallization using EtOH as solvent(Some of the derivatives were purified using silica gel column chromatography. Elution of the column with Petroleum ether:EtOAc mixture gave the desired products).

Product No	Measured MP °C	Reported MP °C
47	209-211	233–235 ^{4a}
48	200-202	
49	170-175	
50	276-278	274–276 ^{4a}
51	245-246	246-248 ^{4a}
52	216-218	217-218 ^{4a}
53	225-228	227-230 ^{4a}
54	204-205	205–206 ^{4a}
55	240-242	242-244 ^{4a}
56	232-234	233–234 ^{4a}
57	184-185	186–187 ^{4a}
58	260-263	
59	226-228	226-227 ^{4b}

Table-4. Comparison of physical data (MP) of the known compounds **References:**

- (a) T. Saison, P. Gras, N. Chemin, C. Chanéac, O. Durupthy, V. Brezová, C. Colbeau– Justin, J.–P. Jolivet, *J. Phys. Chem. C*, **2013**, *117*, 22656–22666; (b) B. V. Kumar, N. K. Veldurthi, J. R. Reddy, M. Vithal, *Micro &NanoLett.*, **2012**, *7*, 544–548.
- (a) A. Debache, W. Ghalem , R. Boulcina, B.Ali, S. Rhouati, B. Carboni, *Tetrahedron Lett.*, 2009, 50, 5248–5250; (b) S. Ghosh, F. Saikh, J. Das, A. K. Pramanik, *Tetrahedron Lett.*, 2013, 54, 58–62; (c) P. Ghosh, P. Mukherjee, Asish, R. Das, *RSC Adv.*, 2013, 3, 8220–8226.
- (a)S. B. Sapkal, K. F. Shelke, B. B. Shingate, M. S. Shingare, *Tetrahedron Lett.*, 2009, 50, 1754–1756.

- 4. J. K Rajput, G. Kaur, Catal. Sci. Technol., 2014, 4, 142–151.
- (a) J. Albadi, A. Mansournezhad, M. Darvishi-Paduk, *Chin. Chem. Lett.*, 2013, 24, 208–210; (b) K. Gong, H.-L. Wang, D. Fang, Z.-L. Liu, *Catal. Commun.*, 2008, 9, 650–653.

Diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (5):

Diethyl 2,4,6-trimethyl-1,4-dihydropyridine-3,5-dicarboxylate (6):

Diethyl 4-(2-chloroquinolin-3-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarboxylate (14):

NAG 5010.90168381 Indian Institute of Technology, Gandhinagar0.00000000 IITGN_MIX_280514_013 2435 (10.902) Cm (2422:2453) 400 415.1389 SYNAPT G2-S#NotSet 01-Jun-201422:32:26 1: TOF MS ES+ 1.52e7

Diethyl 4-(1, 3 diphenyl-1*H*-pyrazole-4-yl)-2,6-dimethyl-1,4dihydropyridine-3,5-dicarboxylate(16):

Diethyl 2, 6-dimethyl-,4-(4-oxo-4*H*-chromene-3-yl)-1,4-dihydropyridine-3,5-dicarboxylate(17):

Ethyl 2,4,7,7-tetramethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate(21):

Ethyl 2-chloro-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-(3,4-biquinoline)-3carboxylate (29):

Ethyl 2,7,7-trimethyl-5-oxo-4-(4-oxo-4*H*-chromene-3-yl)-1,4,5,6,7,8-hexahydroquinoline -3-carboxylate (31):

NAG 348.22875023 Indian Institute of Technology, Gandhinagar0.00000000 IITGN_MIX_280514_015 1836 (8.229) Cm (1810:1839) 100_ 408.1770

100₋

SYNAPT G2-S#NotSet 01-Jun-201423:15:44 1: TOF MS ES+ 4.96e6

2-amino-4,7,7-trimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (35):

2-amino-4-(2-chloroquinolene-3-yl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4*H*-3-carbonitrile (43):

2-amino-7,7-dimethyl-4,5-dioxo-5,6,7,8-tetrahydro-4H,4'H-(3,4'-bichromene)-3carbonitrile (45):

IITGN_MIX_280514_021 629 (2.833) Cm (624:657) 100______385.1156 363.1326

+++

NAG 292.83273339

100

04

n/z 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

Indian Institute of Technology, Gandhinagar0.00000000

SYNAPT G2-S#NotSet 02-Jun-201417:02:25 1: TOF MS ES+ 4.46e6

3-amino-1-(4-oxo-4*H*-chromene-3-yl)-1*H*-benzo(*f*)chromene-2-carbonitrile(60):