Supporting Information

Recyclable $\mathrm{Bi}_{2} \mathbf{W O}_{6}$-nanoparticle mediated one-pot multicomponent reactions in aqueous medium at room temperature ${ }^{\dagger \#}$

 Sriram Kanvah, ${ }^{\text {b }}$ B. Vijaya Kumarc* and Dhurke Kashinath ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Chemistry, National Institute of Technology, Warangal-506 004, India e-mail: kashinath@nitw.ac.in; kashinath.dhurke@gmail.com Tel. +91-870-2462677; FAX No. +91-870-2459547
${ }^{\text {b }}$ Department of Chemistry, Indian Institute of Technology, Gandhinagar, Ahmedabad, India ${ }^{\text {c }}$ Department of Chemistry, Nizam College, Osmania University, Hyderabad, India

Preparation of $\mathrm{BiVO}_{4}, \mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\mathrm{Bi}_{2} \mathrm{WO}_{6}:{ }^{1}$

The chemicals $\left(\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} .5 \mathrm{H}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{WO}_{6}\right.$ and $\left.\mathrm{V}_{2} \mathrm{O}_{5}\right)$ were analytical grade reagents (purchased from Sigma-Aldrich). A Bismuth stock solution prepared with a concentration of $0.2 \mathrm{~mol} \mathrm{~L}^{-1}$ by dissolving $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} .5 \mathrm{H}_{2} \mathrm{O}$ in $1.5 \mathrm{~mol} \mathrm{~L}^{-1}$ nitric acid.
$\mathbf{B i V O}_{4}$: 25 mL of bismuth stock solution was diluted with 25 mL of deionized water, and added $\mathrm{Bi} / \mathrm{V}=1$ molar ratio of $\mathrm{V}_{2} \mathrm{O}_{5}$ and the mixture was stirred for 3 days at RT . The solid was filtered and washed with water ($4 \times 10 \mathrm{~mL}$) and dried.
$\mathbf{B i}_{2} \mathbf{O}_{3}$: Conc. NaOH was added to 15 mL of Bismuth stock solution till the pH of 11.5. The solution was stirred at RT for 24 h , filtered, washed with double distilled water for (4X 10 mL) and dried.
$\mathbf{B i}_{2} \mathbf{W O}_{6}$: Tungstate solution was prepared by dissolving sodium tungstate in HNO_{3} (1.5 molL^{-1}). Bismuth and tungstate stock solution was mixed with $\mathrm{Bi} / \mathrm{W}=2$ (in the molar ratio of $\mathrm{Bi} / \mathrm{W}=2$), this solution was transferred in to a Teflon lined autoclave and then heated at $200^{\circ} \mathrm{C}$ for 24 h under autogenous pressure. After 24 h , autoclave was cooled to RT and the compound obtained was washed with deionized water $(4 \times 10 \mathrm{~mL})$ and dried.

Figure-1. Powder XRD graph of $\mathrm{Bi}_{2} \mathrm{WO}_{6}$ (Before the reaction and after the reaction up to 5 cycles)

General procedure for the synthesis of Dihydropyridines (4-17):

To a mixture of aldehyde (1 equiv), and Ethyl acetoacetate (2 equiv) in water ($3-5 \mathrm{~mL}$) was added $\mathrm{NH}_{4} \mathrm{OAc}$ (2.5 equiv) followed by $\mathrm{Bi}_{2} \mathrm{WO}_{6}(5 \mathrm{~mol} \%$). The mixture was stirred at RT for 60 min . After completion of the reaction (monitored by TLC), the contents were transferred to separating funnel and extracted with EtOAc (3X 10 mL). The combined organic layers were washed with brine, water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Evaporation of the solvent gave the crude product which was purified by recrystallization using EtOH as solvent (Some of the derivatives were purified using
silica gel column chromatography. Elution of the column with Petroleum ether:EtOAc mixture gave the desired dihydropyridines 4-17).

Product No	Measured MP ${ }^{\circ} \mathbf{C}$	Reported MP ${ }^{\mathbf{}} \mathbf{C}$
$\mathbf{6}$	$125-128$	$130^{2 \mathrm{~b}}$
$\mathbf{7}$	$158-160$	$156-158^{2 \mathrm{a}}$
$\mathbf{8}$	$238-240$	$240-242^{2 \mathrm{c}}$
$\mathbf{9}$	$159-161$	$158-160^{2 \mathrm{a}}$
$\mathbf{1 0}$	$228-230$	$227-230^{2 \mathrm{c}}$
$\mathbf{1 1}$	$148-150$	$145-147^{2 \mathrm{a}}$
$\mathbf{1 2}$	$162-164$	$162-164^{2 \mathrm{a}}$
$\mathbf{1 3}$	$132-133$	$130-132^{2 \mathrm{a}}$
$\mathbf{1 5}$	$160-162$	$160-162^{2 \mathrm{a}}$

Table-1. Comparison of physical data (MP) of the known compounds

General procedure for the synthesis of polyhydroquinolones (19-31):

To a mixture of aldehyde (1 equiv), ethyl acetoacetate (1equiv) and dimedone (1 equiv) in water ($3-5 \mathrm{~mL}$) was added $\mathrm{NH}_{4} \mathrm{OAc}$ (2.5 equiv) followed by $\mathrm{Bi}_{2} \mathrm{WO}_{6}$ (5 $\mathrm{mol} \%$). The mixture was stirred at RT for 10 min . After completion of the reaction (monitored by TLC), the contents were transferred to separating funnel and extracted with EtOAc (3X 10 mL). The combined organic layers were washed with brine, water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Evaporation of the solvent gave the crude product
which was purified by recrystallization using EtOH as solvent(Some of the derivatives were purified using silica gel column chromatography. Elution of the column with Petroleum ether:EtOAc mixture gave the desired products).

Product No	Measured $\mathrm{MP}^{\circ} \mathrm{C}$	Reported MP ${ }^{\circ} \mathrm{C}$
$\mathbf{1 9}$	$178-180$	$174-176^{3 \mathrm{a}}$
$\mathbf{2 2}$	$205-206$	$202-204^{3 \mathrm{a}}$
$\mathbf{2 3}$	$234-235$	$231-233^{3 \mathrm{a}}$
$\mathbf{2 4}$	$250-254$	$255-257^{3 \mathrm{a}}$
$\mathbf{2 5}$	$233-235$	$230-232^{3 \mathrm{a}}$
$\mathbf{2 6}$	$240-245$	$245-247^{3 \mathrm{a}}$
$\mathbf{2 7}$	$251-253$	$252-253^{3 \mathrm{a}}$
$\mathbf{2 8}$	$242-246$	$244-246^{3 \mathrm{a}}$
$\mathbf{3 0}$	$246-248$	$246-248^{3 \mathrm{a}}$

Table-2. Comparison of physical data (MP) of the known compounds

General procedure for the synthesis of 4H-chromenederivatives (33-45):

To a mixture of aldehyde (1 equiv), and dimedone (1 equiv) in water ($3-5 \mathrm{~mL}$) was added melanonitrile (1 equiv) followed by $\mathrm{Bi}_{2} \mathrm{WO}_{6}(5 \mathrm{~mol} \%)$. The mixture was stirred at RT for 10 min . After completion of the reaction (monitored by TLC), the contents were transferred to separating funnel and extracted with EtOAc (3 X 10 mL). The combined organic layers were washed with brine, water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and
filtered. Evaporation of the solvent gave the crude product which was purified by recrystallization using EtOH as solvent (Some of the derivatives were purified using silica gel column chromatography. Elution of the column with Petroleum ether:EtOAc mixture gave the desired products).

Product No.	Measured MP ${ }^{\circ} \mathrm{C}$	Reported MP ${ }^{\circ} \mathrm{C}$
$\mathbf{3 3}$	$214-216$	$210-212^{4 \mathrm{a}}$
$\mathbf{3 4}$	$190-192$	--
$\mathbf{3 6}$	$228-230$	$224-226^{4 \mathrm{a}}$
$\mathbf{3 7}$	$210-212$	$212-215^{4 \mathrm{a}}$
$\mathbf{3 8}$	$193-195$	$190-192^{4 \mathrm{a}}$
$\mathbf{3 9}$	$208-210$	$206-208^{4 \mathrm{a}}$
$\mathbf{4 0}$	$207-210$	$210-212^{4 \mathrm{a}}$
$\mathbf{4 1}$	$215-218$	$216-218^{4 \mathrm{a}}$
$\mathbf{4 2}$	$183-184$	$186-189^{4 \mathrm{a}}$
$\mathbf{4 4}$	$210-213$	$200-204^{4 \mathrm{a}}$

Table-3. Comparison of physical data (MP) of the known compounds

General procedure for the synthesis of 2-amino-4H-benzo[b]pyran derivatives

 (47-60):

To a mixture of aldehyde (1 equiv), and β-naphthol (1 equiv) in water ($3-5 \mathrm{~mL}$) was added melanonitrile (1 equiv) followed by $\mathrm{Bi}_{2} \mathrm{WO}_{6}(5 \mathrm{~mol} \%)$. The mixture was stirred at RT for 20 min . After completion of the reaction (monitored by TLC), the contents
were transferred to separating funnel and extracted with EtOAc (3X 10 mL). The combined organic layers were washed with brine, water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Evaporation of the solvent gave the crude product which was purified by recrystallization using EtOH as solvent(Some of the derivatives were purified using silica gel column chromatography. Elution of the column with Petroleum ether:EtOAc mixture gave the desired products).

Product No	Measured MP ${ }^{\mathbf{}} \mathbf{C}$	Reported MP ${ }^{\mathbf{o}} \mathbf{C}$
$\mathbf{4 7}$	$209-211$	$233-235^{4 \mathrm{a}}$
$\mathbf{4 8}$	$200-202$	--
$\mathbf{4 9}$	$170-175$	--
$\mathbf{5 0}$	$276-278$	$274-276^{4 \mathrm{a}}$
$\mathbf{5 1}$	$245-246$	$246-248^{4 \mathrm{a}}$
$\mathbf{5 2}$	$216-218$	$217-218^{4 \mathrm{a}}$
$\mathbf{5 3}$	$225-228$	$227-230^{4 \mathrm{a}}$
$\mathbf{5 4}$	$204-205$	$205-206^{4 \mathrm{a}}$
$\mathbf{5 5}$	$240-242$	$242-244^{4 \mathrm{a}}$
$\mathbf{5 6}$	$232-234$	$233-234^{4 \mathrm{a}}$
$\mathbf{5 7}$	$184-185$	$186-187^{4 \mathrm{a}}$
$\mathbf{5 8}$	$260-263$	--
$\mathbf{5 9}$	$226-228$	$226-227^{4 \mathrm{~b}}$

Table-4. Comparison of physical data (MP) of the known compounds

References:

1. (a) T. Saison, P. Gras, N. Chemin, C. Chanéac, O. Durupthy, V. Brezová, C. ColbeauJustin, J.-P. Jolivet, J. Phys. Chem. C, 2013, 117, 22656-22666; (b) B. V. Kumar, N. K. Veldurthi, J. R. Reddy, M. Vithal, Micro \&NanoLett., 2012, 7, 544-548.
2. (a) A. Debache, W. Ghalem , R. Boulcina, B.Ali, S. Rhouati, B. Carboni, Tetrahedron Lett., 2009, 50, 5248-5250; (b) S. Ghosh, F. Saikh, J. Das, A. K. Pramanik, Tetrahedron Lett., 2013, 54, 58-62; (c) P. Ghosh, P. Mukherjee, Asish, R. Das, RSC Adv., 2013, 3, 8220-8226.
3. (a)S. B. Sapkal, K. F. Shelke, B. B. Shingate, M. S. Shingare, Tetrahedron Lett., 2009, 50, 1754-1756.
4. J. K Rajput, G. Kaur, Catal. Sci. Technol., 2014, 4, 142-151.
5. (a) J. Albadi, A. Mansournezhad , M. Darvishi-Paduk, Chin. Chem. Lett., 2013, 24, 208210; (b) K. Gong, H.-L. Wang, D. Fang, Z.-L. Liu, Catal. Commun., 2008, 9, 650-653.

Diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (5):

Diethyl 2,4,6-trimethyl-1,4-dihydropyridine-3,5-dicarboxylate (6):

Diethyl 4-(2-chloroquinolin-3-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarboxylate (14):

NAG 5010.90168381
IITGN_MIX_280514_013 2435 (10.902) Cm (2422:2453)

Diethyl 4-(1, 3 diphenyl-1 H-pyrazole-4-yl)-2,6-dimethyl-1,4dihydropyridine-3,5dicarboxylate(16):

Diethyl 2, 6-dimethyl-,4-(4-oxo-4H-chromene-3-yl)-1,4-dihydropyridine-3,5dicarboxylate(17):

Ethyl 2,4,7,7-tetramethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate(21):

Ethyl 2-chloro-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-(3,4-biquinoline)-3carboxylate (29):

Ethyl 2,7,7-trimethyl-5-oxo-4-(4-oxo-4H-chromene-3-yl)-1,4,5,6,7,8-hexahydroquinoline
-3-carboxylate (31):

NAG 348.22875023
Indian Institute of Technology. Gandhinagar0.00000000
IITGN_MIX_280514_015 1836 (8.229) Cm (1810:1839)
IITGN_MIX_280514_015 1836 (8.229) Cm
100

2-amino-4,7,7-trimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (35):

Indian Institute of Technology, Gandhinagaro.00000000

2-amino-4-(2-chloroquinolene-3-yl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-3carbonitrile (43):

SYNAPT G2-S\#NotSe
O2-Jun-201417:44:5
1:TOF MS ES+

IITGN_MIX_280514_023 1829 (8.198) Cm (1809:1866)
(100)

2-amino-7,7-dimethyl-4,5-dioxo-5,6,7,8-tetrahydro-4H,4'H-(3,4'-bichromene)-3carbonitrile (45):

IITGN_MIX_280514_021 629 (2.833) Cm (624:657)

3-amino-1-(4-oxo-4H-chromene-3-yl)-1 \boldsymbol{H}-benzo(f)chromene-2-carbonitrile(60):

NAG 457.34266663

