Organocatalytic Asymmetric [4+2] Formal Cycloadditions of Cyclohexenylidenemalononitriles and Enals to Construct Chiral Bicyclo[2.2.2]octanes

Qing-Zhu Li,^{*a*} Jing Gu,^{*a*} and Ying-Chun Chen*^{*a,b*}

^a Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, and

State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China

^b College of Pharmacy, Third Military Medical University, Chongqing 400038, China.

Email: ycchen@scu.edu.cn

Supplementary Information

Table of Contents

1. General methods	S2
2. General procedure for preparation of cyclohexenylidenemalononitriles	S2
3. General procedure for asymmetric [4+2] cycloadditions	
4. Procedure for regio- and diastereoselective reduction of 4a	
5. Procedure for asymmetric [4+2] formal cycloaddition of 2a and nitroolefin	S11
6. Crystal data and structure refinement for enantiopure alcohol of 4g	S12
7. NMR spectra and HPLC chromatograms	

1. General methods

NMR data were obtained for ¹H at 400 MHz, and for ¹³C at 100 MHz. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution. ESI HRMS was recorded on a Waters SYNAPT G2. In each case, enantiomeric ratio was determined by HPLC analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralpak AD-H Column (250 × 4.6 mm) or Chiralpak OD Column (250 × 4.6 mm), Chiralpak IB Column (250 × 4.6 mm), Chiralpak IC Column (250 × 4.6 mm). UV detection was monitored at 220 nm or 254 nm. Optical rotation was examined in CHCl₃ solution at 20 °C. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. UV light and I₂ were used to visualize products. All chemicals were used without purification as commercially available unless otherwise noted. The secondary amines **1** were synthesized according to the literature procedures.¹

(*a*) M. Marigo, T. C. Wabnitz, D. Fielenbach and K. A. Jørgensen, *Angew. Chem., Int. Ed.*, 2005,
 44, 794; (*b*) Y. Hayashi, H. Gotoh, T. Hayashi and M. Shoji, *Angew. Chem., Int. Ed.*, 2005, **44**, 4212;
 (*c*) Y.-K. Liu, C. Ma, K. Jiang, T.-Y. Liu and Y.-C. Chen, *Org. Lett.*, 2009, **11**, 2848; (*d*) C. Ma, Z.-J.
 Jia, J.-X. Liu, Q.-Q. Zhou, L. Dong, Y.-C. Chen, *Angew. Chem., Int. Ed.*, 2013, **52**, 948.

2. General procedure for the preparation of cyclohexenylidenemalononitriles

The cyclohexenylidenemalononitriles **2a**–**2e** were prepared from the corresponding 3-substituted 2-cyclohexenones and malononitrile. *The desired condensation product could not be obtained from simple 2-cyclohexenone*.

A solution of 3-methyl-2-cyclohexenone (2.2 g, 20 mmol), malononitrile (1.3 g, 20 mmol), anhydrous ammonium acetate (0.3 g, 2 mmol) and acetic acid (1.1 mL, 20 mmol) in toluene (20 mL) was refluxed under a Dean-Stark trap for 48 h at 120 °C. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to give the cyclohexenylidenemalononitrile **2a** (2.3 g, 73% yield).

3H), 1.88 (quint, *J* = 6.4 Hz, 2H) ppm.

3. General procedure for asymmetric [4+2] formal cycloadditions

Conditions A: The reaction was conducted with cyclohexenylidenemalononitrile **2** (0.1 mmol) and α,β -unsaturated aldehyde **3** (0.15 mmol) in the presence of α,α -diphenylprolinol *O*-TES ether **1b** (0.02 mmol), *N,N*-diisopropylethylamine (DIPEA, 0.02 mmol) in MeCN (1 mL) at room temperature. After completion (monitored by TLC analysis), the solvent was removed under vacuum and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford the bicyclo[2.2.2]octanes **4a**, **4c** and **4d**.

Conditions B: The reaction was conducted with cyclohexenylidenemalononitrile **2** (0.1 mmol) and α,β -unsaturated aldehydes **3** (0.15 mmol) in the presence of α,α -diphenylprolinol *O*-TMS ether **1a** (0.02 mmol), benzoic acid (0.02 mmol) in MeCN (1 mL) at room temperature. After completion (monitored by TLC analysis), the solvent was removed under vacuum and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford the bicyclo[2.2.2]octanes **4b** and **4e–4q**.

OHC CN

2-((1*S*,4*S*,5*R*)-5-Formyl-4,6-dimethylbicyclo[2.2.2]octan-2-ylidene)malononit rile (4a) was obtained in 84% yield. After reduction, the enantiomeric excess of

the corresponding alcohol was determined to be 97% by HPLC analysis on Chiralpak OD column (5% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{major} = 25.53$ min, $t_{minor} = 29.33$ min; $[\alpha]_D^{20} = -15.3$ (c = 0.6 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 9.87$ (d, J = 2.4 Hz, 1H), 2.98-2.97 (m, 1H), 2.62-2.56 (m, 2H), 2.47 (d, J = 20.4 Hz, 1H), 2.00-1.89 (m, 2H), 1.74-1.59 (m, 2H), 1.33-1.27 (m, 1H), 1.22 (s, 3H), 0.92 (d, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.9$, 187.0, 111.1, 111.0, 83.6, 61.9, 44.7, 42.2, 34.5, 31.6, 27.0, 24.7, 24.0, 20.9 ppm; ESI HRMS: calcd. for C₁₄H₁₆N₂O+MeOH+Na⁺283.1417, found 283.1420.

2-((1S,4S,5R)-5-Formyl-4-methyl-6-phenylbicyclo[2.2.2]octan-2-ylidene)mal

ononitrile (4b) was obtained in 90% yield. After reduction, the enantiomeric excess of the corresponding alcohol was determined to be 98% by HPLC

analysis on Chiralpak OD column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{major} = 14.07 \text{ min}, t_{minor} = 22.66 \text{ min}; [\alpha]_D^{20} = +44.1 (c = 1.8 \text{ in CHCl}_3); ^1\text{H NMR} (400 \text{ MHz}, \text{CDCl}_3): \delta = 1.00 \text{ min}$

9.93 (d, J = 1.6 Hz, 1H), 7.35-7.26(m, 3H), 7.02 (d, J = 7.2 Hz, 2H), 3.88 (dd, J = 7.2 Hz, J = 1.6Hz, 1H), 3.24-3.23 (m, 1H), 2.83-2.74 (m, 2H), 2.58 (d, J = 20.4 Hz, 1H), 2.20-2.13 (m, 1H), 1.79-1.67 (m, 2H), 1.41-1.34 (m, 1H), 1.35 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.6$, 185.8, 141.1, 129.0, 127.5, 126.8, 111.0, 110.5, 83.7, 59.5, 45.0, 43.0, 42.3, 34.7, 27.1, 25.5, 24.0 ppm; ESI HRMS: calcd. for $C_{19}H_{18}N_2O+MeOH+Na^+ 345.1573$, found 345.1576.

2-((1S,4S,5R,6S)-6-Ethyl-5-formyl-4-methylbicyclo[2.2.2]octan-2-ylidene)malo

nonitrile (4c) was obtained in 73% yield. After reduction, the enantiomeric excess of the corresponding alcohol was determined to be 91% by HPLC analysis on Chiralpak OD column (20% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{major} = 7.06 min, t_{minor} = 8.40 min; $[\alpha]_D^{20} = -21.6$ (c = 1.3 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 9.88$ (d, J = 2.0 Hz, 1H), 3.14-3.12 (m, 1H), 2.56 (dd, *J* = 20.4 Hz, *J* = 2.4 Hz, 1H), 2.46 (d, *J* = 20.4 Hz, 1H), 2.39-2.37 (m, 1H), 1.96-1.92 (m, 1H), 1.71-1.57 (m, 2H), 1.31-1.22 (m, 3H), 1.22 (s, 3H), 1.13-1.09 (m, 1H), 0.89 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 202.2$, 187.4, 111.2, 111.0, 83.4, 60.6, 44.8, 40.3, 38.8, 34.6, 28.8, 27.4, 24.9, 24.1, 11.5 ppm; ESI HRMS: calcd. for $C_{15}H_{18}N_2O-H^+$ 241.1346, found 241.1341.

2-((1S,4S,5R,6S)-5-Formyl-4-methyl-6-propylbicyclo[2.2.2]octan-2-ylidene)mal

ononitrile (4d) was obtained in 76% yield. After reduction, the enantiomeric OHC excess of the corresponding alcohol was determined to be 93% by HPLC analysis on Chiralpak IC column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{major} = 26.70 min, $t_{minor} = 31.71 \text{ min}; [\alpha]_D^{20} = -11.4 (c = 0.45 \text{ in CHCl}_3); {}^{1}\text{H NMR} (400 \text{ MHz}, \text{CDCl}_3); \delta = 9.88 (d, J = 0.45 \text{ in CHCl}_3); \delta = 0.88 (d, J = 0.45 \text{ in CHC$ 2.4 Hz, 1H), 3.09-3.09 (m, 1H), 2.56 (dd, J = 20.8 Hz, J = 2.4 Hz, 1H), 2.49-2.44 (m, 2H), 1.97-1.93 (m, 2H), 1.71-1.59 (m, 2H), 1.31-1.19 (m, 4H), 1.21 (s, 3H), 1.05-1.01 (m, 1H), 0.89 (t, J = 7.2 Hz, 3H) ppm; 13 C NMR (100 MHz, CDCl₃): δ = 202.3, 187.4, 111.1, 111.0, 83.3, 60.8, 44.8, 40.4, 38.0, 36.7, 34.6, 27.4, 24.9, 24.1, 20.0, 13.8 ppm; ESI HRMS: calcd. for C₁₆H₂₀N₂O-H⁺ 255.1503, found 255.1501.

2-((1S,4S,5R)-5-Formyl-6-(4-methoxyphenyl)-4-methylbicyclo[2.2.2]octan-2-ylidene)malononi trile (4e) was obtained in 94% yield. After reduction, the enantiomeric excess of the corresponding alcohol was determined to be 95% by HPLC analysis on Chiralpak OD column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{major} = 20.26$ min, $t_{minor} = 8.44$ min; $[\alpha]_D^{20} = +13.4$ (c = 1.2 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 9.90$ (d, J = 1.2 Hz, 1H), 6.95 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H), 3.80-3.78 (m, 1H), 3.78 (s, 3H), 3.19 (d, J = 2.4 Hz, 1H), 2.77 (dd, J = 20.8 Hz, J = 2.4 Hz, 1H), 2.70 (d, J = 6.4 Hz, 1H), 2.57 (d, J = 20.8 Hz, 1H), 2.17-2.05 (m, 1H), 1.77-1.65 (m, 2H), 1.38-1.26 (m, 1H), 1.33 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.7$, 186.0, 158.7, 133.1, 127.9, 114.3, 111.0, 110.7, 83.7, 59.8, 55.2, 45.0, 43.3, 41.6, 34.7, 27.0, 25.5, 24.0 ppm; ESI HRMS: calcd. for C₂₀H₂₀N₂O₂+MeOH+Na⁺ 375.1679, found 375.1689.

2-((1*S***,4***S***,5***R***)-5-Formyl-4-methyl-6-(p-tolyl)bicyclo[2.2.2]octan-2-ylidene)mal ononitrile (4f) was obtained in 83% yield. After reduction, the enantiomeric excess of the corresponding alcohol was determined to be 95% by HPLC analysis on Chiralpak OD column (30% 2-propanol/***n***-hexane, 1 mL/min), UV 254 nm,**

t_{major} = 14.04 min, t_{minor} = 7.18 min; $[α]_D^{20}$ = +21.3 (*c* = 0.43 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 9.91 (d, *J* = 1.2 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 2H), 6.91 (d, *J* = 8.0 Hz, 2H), 3.82 (dd, *J* = 7.2 Hz, *J* = 1.6 Hz, 1H), 3.22-3.20 (m, 1H), 2.77 (dd, *J* = 20.8 Hz, *J* = 2.4 Hz, 1H), 2.72 (d, *J* = 6.8 Hz, 1H), 2.57 (d, *J* = 20.4 Hz, 1H), 2.32 (s, 3H), 2.15-2.14 (m, 1H), 1.74-1.69 (m, 2H), 1.37-1.32 (m, 1H), 1.33 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 201.6, 186.0, 138.1, 137.2, 129.7, 126.6, 111.0, 110.6, 83.7, 59.7, 45.1, 43.1, 42.0, 34.7, 27.1, 25.6, 24.1, 20.9 ppm; ESI HRMS: calcd. for C₂₀H₂₀N₂O+MeOH+Na⁺ 359.1730, found 359.1734.

OHC

2-((1*S*,4*S*,5*R*)-6-(3-Chlorophenyl)-5-formyl-4-methylbicyclo[2.2.2]octan-2-yli dene)malononitrile (4g) was obtained in 91% yield. After reduction, the enantiomeric excess of the corresponding alcohol was determined to be 94% by HPLC analysis on Chiralpak AD column (20% 2-propanol/*n*-hexane, 1 mL/min),

UV 254 nm, $t_{major} = 5.70$ min, $t_{minor} = 7.60$ min; $[\alpha]_D^{20} = +28.6$ (c = 1.3 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 9.92$ (d, J = 1.2 Hz, 1H), 7.29-7.23 (m, 2H), 7.03 (s, 1H), 6.92-6.89 (m, 1H), 3.87 (dd, J = 6.8 Hz, J = 1.6 Hz, 1H), 3.22-3.21 (m, 1H), 2.79 (dd, J = 20.4 Hz, J = 2.4 Hz, 1H), 2.69 (d, J = 7.2 Hz, 1H), 2.59 (d, J = 20.4 Hz, 1H), 2.18-2.12 (m, 1H), 1.78-1.61 (m, 2H), 1.41-1.33 (m, 1H), 1.36 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.1$, 185.1, 143.2, 134.9, 130.3,

127.8, 127.3, 124.8, 110.8, 110.5, 84.0, 59.5, 45.0, 42.6, 41.8, 34.8, 27.0, 25.6, 24.0 ppm; ESI HRMS: calcd. for $C_{19}H_{17}CIN_2O+MeOH+Na^+$ 379.1184 (Cl³⁵) and 381.1155 (Cl³⁷), found 379.1187 and 381.1160.

2-((1*S*,4*S*,5*R*)-6-(2-Bromophenyl)-5-formyl-4-methylbicyclo[2.2.2]octan-2-ylid ene)malononitrile (4h) was obtained in 87% yield. After reduction, the enantiomeric excess of the corresponding alcohol was determined to be 94% by

HPLC analysis on Chiralpak OD column (30% 2-propanol/n-hexane, 1 mL/min),

UV 254 nm, $t_{major} = 10.14$ min, $t_{minor} = 8.47$ min; $[\alpha]_D^{20} = +10.4$ (c = 1.4 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 9.88$ (d, J = 1.2 Hz, 1H), 7.64-7.62 (m, 1H), 7.33-7.29 (m, 1H), 7.18-7.14 (m, 1H), 6.83 (d, J = 8.0 Hz, 1H), 4.44 (dd, J = 7.2 Hz, J = 1.6 Hz, 1H), 3.19 (d, J = 2.0 Hz, 1H), 2.81 (dd, J = 20.4 Hz, J = 1.6 Hz, 1H), 2.74 (d, J = 7.2 Hz, 1H), 2.58 (d, J = 20.4 Hz, 1H), 2.30-2.22 (m, 1H), 1.81-1.74 (m, 2H), 1.43-1.35 (m, 1H), 1.35 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.8$, 184.6, 138.9, 134.0, 129.2, 127.7, 126.4, 125.5, 110.9, 110.1, 84.1, 57.9, 44.9, 42.0, 41.6, 34.8, 27.1, 24.7, 24.2 ppm; ESI HRMS: calcd. for C₁₉H₁₇BrN₂O+MeOH+Na⁺423.0679 (Br⁷⁹) and 425.0659 (Br⁸¹), found 423.0681 and 425.0664.

2-((1*S*,4*S*,5*R*)-6-(3,4-Dichlorophenyl)-5-formyl-4-methylbicyclo[2.2.2]octan-2ylidene)malononitrile (4i) was obtained in 85% yield. After reduction, the enantiomeric excess of the corresponding alcohol was determined to be 96% by

HPLC analysis on Chiralpak AD column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{major} = 10.09$ min, $t_{minor} = 11.38$ min; $[\alpha]_D^{20} = +17.9$ (c = 2.1 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 9.93$ (s, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.14 (d, J = 2.0 Hz, 1H), 6.86 (dd, J = 8.4Hz, J = 2.4 Hz, 1H), 3.87-3.85 (m, 1H), 3.23 (d, J = 2.4 Hz, 1H), 2.79 (dd, J = 20.8 Hz, J = 2.4 Hz, 1H), 2.65-2.58 (m, 2H), 2.18-2.12 (m, 1H), 1.78-1.61 (2H), 1.42-1.34 (m, 1H), 1.37 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.9$, 184.7, 141.4, 133.2, 131.8, 131.0, 129.2, 125.9, 110.7, 110.4, 84.2, 59.8, 45.0, 42.4, 41.2, 34.9, 27.0, 25.6, 24.2 ppm; ESI HRMS: calcd. for C₁₉H₁₆Cl₂N₂O+MeOH+Na⁺ 413.0794 (Cl³⁵) and 415.0764 (Cl³⁷), found 413.0793 and 415.0766.

$\label{eq:constraint} 2-((1S,4S,5R)-5-Formyl-4-methyl-6-(4-nitrophenyl) bicyclo \cite{2.2.2}] octan-2-ylidene) malononitrile and the second second$

(4j) was obtained in 90% yield. After reduction, the enantiomeric excess of the corresponding

CN

OHC

alcohol was determined to be 92% by HPLC analysis on Chiralpak AD column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{major} = 16.21$ min, $t_{minor} =$ 14.95 min; $[\alpha]_D^{20} = +14.0$ (c = 0.94 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta =$ 9.95 (s, 1H), 8.20 (d, J = 8.8 Hz, 2H), 7.23 (d, J = 8.8 Hz, 2H), 4.05 (dd, J = 7.2Hz, J = 1.2 Hz, 1H), 3.26-3.25 (m, 1H), 2.85 (dd, J = 20.8 Hz, J = 2.4 Hz, 1H),

2.73 (d, J = 6.8 Hz, 1H), 2.65 (d, J = 20.8 Hz, 1H), 2.23-2.16 (m, 1H), 1.82-1.74 (m, 1H), 1.72-1.64 (m, 1H), 1.46-1.38 (m, 1H), 1.41 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 184$, 148.5, 147.1, 127.9, 124.3, 110.6, 110.4, 84.3, 59.6, 45.0, 42.3, 41.7, 34.9, 27.0, 25.6, 24.0 ppm; ESI HRMS: calcd. for C₁₉H₁₇N₃O₃+MeOH+Na⁺ 390.1424, found 390.1430.

2-((1*S*,4*S*,5*R*)-5-Formyl-4-methyl-6-(pyridin-2-yl)bicyclo[2.2.2]octan-2-ylidene)malononitrile (4k) was obtained in 94% yield. After reduction, the enantiomeric excess of the corresponding alcohol was determined to be 84% by HPLC analysis on Chiralpak IC column (10% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, t_{maior}

= 16.48 min, $t_{minor} = 19.72$ min; $[\alpha]_D{}^{20} = +9.3$ (c = 0.56 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta =$ 9.94 (s, 1H), 8.54 (dd, J = 4.8 Hz, J = 1.6 Hz, 1H), 8.37 (d, J = 2.0 Hz, 1H), 7.36-7.26 (m, 2H), 3.94-3.93 (m, 1H), 3.21-3.20 (m, 1H), 2.83 (dd, J = 20.8 Hz, J = 2.4 Hz, 1H), 2.71 (d, J = 6.8 Hz, 1H), 2.64 (d, J = 20.8 Hz, 1H), 2.22-2.16 (m, 1H), 1.81-1.65 (m, 2H), 1.43-1.39 (m, 1H), 1.39 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.8$, 184.6, 149.1, 148.6, 136.7, 134.2, 123.7, 110.7, 110.4, 84.3, 59.5, 45.1, 42.5, 39.8, 34.8, 27.0, 25.6, 24.0 ppm; ESI HRMS: calcd. for C₁₈H₁₇N₃O+MeOH+H⁺ 324.1707, found 324.1705.

2-((1*S*,4*S*,5*R*)-5-Formyl-6-(furan-2-yl)-4-methylbicyclo[2.2.2]octan-2-ylidene) malononitrile (4l) was obtained in 93% yield. After reduction, the enantiomeric excess of the corresponding alcohol was determined to be 94% by HPLC analysis

on Chiralpak OD column (20% 2-propanol/n-hexane, 1 mL/min), UV 254 nm,

 $t_{major} = 8.80 \text{ min}, t_{minor} = 12.15 \text{ min}; [\alpha]_D^{20} = +45.5 (c = 1.4 \text{ in CHCl}_3); {}^{1}\text{H NMR} (400 \text{ MHz}, \text{CDCl}_3):$ $\delta = 9.95 (s, 1\text{H}), 7.32 (d, J = 1.6 \text{ Hz}, 1\text{H}), 6.29-6.28 (m, 1\text{H}), 6.05 (d, J = 2.8 \text{ Hz}, 1\text{H}), 3.96 (dd, J = 6.0 \text{ Hz}, J = 2.0 \text{ Hz}, 1\text{H}), 3.41-3.40 (m, 1\text{H}), 2.78-2.72 (m, 2\text{H}), 2.52 (d, J = 20.4 \text{ Hz}, 1\text{H}), 2.08-2.03 (m, 1\text{H}), 1.76-1.69 (m, 1\text{H}), 1.67-1.60 (m, 1\text{H}), 1.38-1.29 (m, 1\text{H}), 1.34 (s, 3\text{H}) \text{ ppm}; {}^{13}\text{C NMR}$ (100 MHz, CDCl₃): δ = 201.1, 185.7, 153.8, 142.3, 111.0, 110.7, 110.4, 105.8, 83.4, 57.6, 44.6, 40.6, 35.5, 34.6, 27.2, 24.4, 24.0 ppm; ESI HRMS: calcd. for C₁₇H₁₆N₂O₂+MeOH+Na⁺ 335.1366, found 335.1374.

HRMS: calcd. for C₂₁H₂₀N₂O+MeOH+Na⁺ 371.1730, found 371.1738.

OHC

2-((1S,4S,5R,6S)-5-Formyl-4-methyl-6-(phenylethynyl)bicyclo[2.2.2]octan-2-y lidene)malononitrile (4n) was obtained in 83% yield. After reduction, the enantiomeric excess of the corresponding alcohol was determined to be 94% by

HPLC analysis on Chiralpak OD column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{major} = 9.76$ min, $t_{minor} = 15.11$ min; $[\alpha]_D{}^{20} = 18.6$ (*c* = 0.58 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 9.97$ (s, 1H), 7.38-7.26 (m, 5H), 3.79 (dd, *J* = 5.2 Hz, *J* = 2.8 Hz, 1H) 3.40-3.39 (m, 1H), 2.82 (dd, *J* = 20.4 Hz, *J* = 2.8 Hz, 1H), 2.71 (d, *J* = 4.8 Hz, 1H) 2.54 (d, *J* = 20.4 Hz, 1H) 2.01-1.92 (m, 1H), 1.77-1.69 (m, 1H), 1.57-1.48 (m, 1H), 1.34 (s, 3H), 1.33-1.24 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.4$, 186.2, 136.0, 132.0, 129.0, 128.6, 128.0, 126.4, 111.0, 111.0, 83.6, 59.7, 44.9, 41.4, 39.5, 34.6, 27.2, 24.6, 24.0 ppm; ESI HRMS: calcd. for $C_{21}H_{18}N_2O+MeOH+Na^+$ 369.1573, found 369.1573.

2-((1*S*,4*S*,5*R*)-4-Ethyl-5-formyl-6-phenylbicyclo[2.2.2]octan-2-ylidene)malononitrile (40) was obtained in 84% yield. After reduction, the enantiomeric excess of the corresponding alcohol was

determined to be 91% by HPLC analysis on Chiralpak OD column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{major} = 19.25$ min, $t_{minor} = 28.50$ min; $[\alpha]_D^{20} = +30.5$ (c = 1.1 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 9.91$ (d, J = 1.6 Hz, 1H), 7.35-7.25 (m, 3H), 7.03 (d, J = 7.2 Hz, 2H), 3.88-3.86 (m, 1H),

3.24 (d, J = 2.4 Hz, 1H), 2.89-2.81 (m, 2H), 2.54 (d, J = 20.4 Hz, 1H), 2.22-2.15 (m, 1H), 1.80-1.71 (m, 2H), 1.68-1.1.52 (m, 2H), 1.46-1.39 (m, 1H), 1.09 (t, J = 7.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.5$, 186.3, 141.2, 129.1, 127.6, 126.8, 111.1, 110.6, 83.9, 56.9, 43.1, 42.3, 41.1, 38.3, 29.6, 26.0, 25.5, 8.2 ppm; ESI HRMS: calcd. for C₂₀H₂₀N₂O+MeOH+Na⁺ 359.1730, found 359.1731.

OHC CN CN Ph 2-((1*S*,4*R*,5*R*)-5-Formyl-6-phenyl-4-(phenylethynyl)bicyclo[2.2.2]octan-2-yli dene)malononitrile (4p) was obtained in 82% yield. After reduction, the enantiomeric excess of the corresponding alcohol was determined to be 86% by HPLC analysis on Chiralpak OD column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{maior} = 17.31$ min, $t_{minor} = 24.01$ min; $[\alpha]_D^{20} = +10.8$ (*c* = 0.51 in

CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 10.21$ (s, 1H), 7.44-7.26 (m, 8H), 7.08-7.06 (m, 2H), 4.01 (d, J = 6.4 Hz, 1H), 3.29-3.24 (m, 2H), 3.14-3.08 (m, 2H), 2.19-2.13 (m, 1H), 1.98-1.92 (m, 1H), 1.88-1.75 (m 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.0$, 183.1, 140.7, 131.7, 129.2, 128.9, 128.5, 127.7, 126.8, 121.7, 110.8, 110.3, 88.0, 86.4, 84.5, 57.9, 43.7, 42.6, 41.0, 32.1, 27.2, 24.9 ppm; ESI HRMS: calcd. for C₂₆H₂₀N₂O+MeOH+Na⁺ 431.1730, found 431.1734.

OHC Ph CN CN 2-((1*R*,4*S*,5*R*,6*S*)-5-Formyl-4,7,7-trimethyl-6-phenylbicyclo[2.2.2]octan-2-ylid ene)malononitrile (4q) was obtained in 78% yield. After reduction, the enantiomeric excess of the corresponding alcohol was determined to be 92% by

HPLC analysis on Chiralpak OD column (10% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{major} = 9.19$ min, $t_{minor} = 9.92$ min; $[\alpha]_D{}^{20} = +27.1$ (*c* = 0.87 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 9.90$ (s, 1H), 7.35-7.26 (m, 3H), 7.03 (d, *J* = 6.8 Hz, 2H), 4.22-4.20 (m, 1H), 2.79-2.68 (m, 3H), 2.51 (d, *J* = 20.8 Hz, 1H), 1.46 (dd, *J* = 14.4 Hz, *J* = 2.8 Hz, 1H), 1.35 (s, 3H), 1.35 (s, 3H), 1.15 (dd, *J* = 18.0 Hz, *J* = 5.0 Hz, 1H), 0.92 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.3$, 184.7, 140.6, 129.0, 127.6, 127.2, 110.9, 110.5, 85.4, 58.2, 56.0, 43.8, 43.2, 38.1, 36.1, 33.0, 31.6, 28.6, 129.0, 127.6, 127.2, 110.9, 110.5, 85.4, 58.2, 56.0, 43.8, 43.2, 38.1, 36.1, 33.0, 31.6, 28.6, 129.0, 127.6, 127.2, 110.9, 110.5, 85.4, 58.2, 56.0, 43.8, 43.2, 38.1, 36.1, 33.0, 31.6, 28.6, 129.0, 127.6, 127.2, 110.9, 110.5, 85.4, 58.2, 56.0, 43.8, 43.2, 38.1, 36.1, 33.0, 31.6, 28.6, 129.0, 127.6, 127.2, 110.9, 110.5, 85.4, 58.2, 56.0, 43.8, 43.2, 38.1, 36.1, 33.0, 31.6, 28.6, 129.0, 127.6, 127.2, 110.9, 110.5, 85.4, 58.2, 56.0, 43.8, 43.2, 38.1, 36.1, 33.0, 31.6, 28.6, 129.0, 127.6, 127.2, 110.9, 110.5, 85.4, 58.2, 56.0, 43.8, 43.2, 38.1, 36.1, 33.0, 31.6, 28.6, 129.0, 127.6, 127.2, 110.9, 110.5, 85.4, 58.2, 56.0, 43.8, 43.2, 38.1, 36.1, 33.0, 31.6, 28.6, 129.0, 127.6, 127.2, 110.9, 110.5, 85.4, 58.2, 56.0, 43.8, 43.2, 38.1, 36.1, 33.0, 31.6, 28.6, 129.0, 127.6, 127.2, 110.9, 110.5, 85.4, 58.2, 56.0, 43.8, 43.2, 38.1, 36.1, 33.0, 31.6, 28.6, 129.0, 127.6, 127.2, 110.9, 110.5, 85.4, 58.2, 56.0, 43.8, 43.2, 38.1, 36.1, 33.0, 31.6, 28.6, 129.0, 127.6, 127.2, 110.9, 110.5, 85.4, 58.2, 56.0, 43.8, 43.2, 38.1, 36.1, 33.0, 31.6, 28.6, 120.1, 120.

24.1 ppm; ESI HRMS: calcd. for $C_{21}H_{22}N_2O+MeOH+Na^+$ 373.1886, found 373.1894.

4. Procedure for regio- and diastereoselective reduction of 4a

To a solution of bicyclo[2.2.2]octane **4a** (0.1 mmol) in DCM (1 mL) was added NaBH(OAc)₃ (0.15 mmol). After stirred for 4 h at room temperature, the reaction was quenched by water (1 mL) and the organic phase was separated and dried by anhydrous Na₂SO₄. Then, the solvent was removed under vacuum and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford the alcohol **6** in 83% yield and the enantiomeric excess was determined to be 98% by HPLC analysis on Chiralpak OD column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, t_{major} = 14.07 min, t_{minor} = 22.66 min; $[\alpha]_D^{20}$ = +35.8 (*c* = 0.89 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.34-7.24 (m, 3H), 7.06 (d, *J* = 7.2 Hz, 2H), 3.78 (dd, *J* = 10.8 Hz, *J* = 5.2 Hz, 1H), 3.68 (dd, *J* = 10.8 Hz, *J* = 6.0 Hz, 1H), 3.10 (d, *J* = 8.0 Hz, 1H), 3.05-3.03 (m, 1H), 2.66 (d, *J* = 20.4 Hz, 1H), 2.52 (d, *J* = 20.4 Hz, 1H), 2.13-1.94 (m, 2H), 1.79-1.68 (m, 2H), 1.30-1.24 (m, 1H), 1.13 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 187, 142.4, 129.0, 127.3, 127.2, 111.3, 110.7, 83.1, 62.7, 49.0, 48.3, 46.0, 44.8, 33.3, 26.8, 26.1, 24.2 ppm; ESI HRMS: calcd. for C₁₉H₂₀N₂O+Na⁺ 315.1468, found 315.1474.

A mixture of alcohol **6** (0.1 mmol) and Hantzsch ester (0.15 mmol) in ethanol (1 mL) was stirred at 80 °C for 12 h. Then the solvent was removed under vacuum and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford the product **7** in 76% yield. The enantiomeric excess was determined to be 96% by HPLC analysis on Chiralpak OD column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{major} = 12.25$ min, $t_{minor} = 19.87$ min; $[\alpha]_D^{20} = -90.4$ (c = 2.4 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.42-7.37$ (m, 4H), 7.30-7.26 (m, 1H), 3.91 (dd, J = 10.8 Hz, J = 5.2 Hz, 1H), 3.57 (dd, J = 10.4 Hz, J = 7.6 Hz, 1H), 3.02 (d, J = 4.4 Hz, 1H), 2.85 (d, J = 12.4 Hz, 1H), 2.43-2.41 (m, 1H), 2.35-2.24 (m, 2H), 1.94-1.86 (m, 2H), 1.78-1.65 (m, 2H) 1.38-1.19 (m, 3H), 1.10 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 142.5$, 129.3, 112.3, 112.0, 64.5, 45.3, 44.9, 41.1, 39.3, 35.4, 31.7, 29.3, 26.9, 26.9, 25.6 ppm; ESI HRMS:

calcd. for. $C_{19}H_{22}N_2O+Na^+$ 317.1624, found 317.1629.

Since some typical peaks of compound **7** overlapped, a simple synthetic transformation was applied to oxidate the hydroxy group to the corresponding aldehyde **10**, whose relative configuration could be established by NOE analysis.

PCC (0.15 mmol) was added to the solution of alcohol **7** (0.1 mmol) in DCM (1 mL) at room temperature. After stirred for 1 h at rt, 30 mg silica gel was added and the mixture was filtrated. The filtrate was concentrated under vacuum and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford the aldehyde **10** in 76% yield.

¹H NMR (400 MHz, CDCl₃): $\delta = 9.92$ (d, J = 2.0 Hz, 1H), 7.42-7.29 (m, 5H), 3.78-3.76 (m, 1H), 3.04-3.02 (m, 1H), 2.74 (d, J = 12.0 Hz, 1H), 2.56-2.54 (m, 1H), 2.35 (dd, J = 19.6 Hz, J = 10.8 Hz, 1H), 1.96-1.86 (m, 2H), 1.81-1.73 (m, 1H), 1.65-1.59 (m, 1H), 1.47-1.32 (m, 2H), 1.30 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 202.5$, 140.8, 129.5, 127.6, 126.9, 112.1, 112.0, 56.0, 40.2, 39.1, 38.9, 34.2, 33.3, 28.5, 27.6, 26.7, 25.2 ppm; ESI HRMS: calcd. for C₁₉H₂₀N₂O+MeOH+Na⁺ 347.1730, found 347.1733.

5. Procedure for asymmetric [4+2] formal cycloaddition of cyclohexenylidenemalononitrile 2a and nitroolefin 8

The reaction was conducted with cyclohexenylidenemalononitrile 2a (0.1 mmol) and nitroolefin 8 in the presence of (DHQD)₂PHAL (hydroquinidine 1,4-phthalazinediyl diether, 0.02 mmol) in MeCN (1 mL) at room temperature. After 48 h, the solvent were removed under vacuum and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford the nitro-containing bicyclo[2.2.2]octane 9 in 62% yield and the enantiomeric excess was

determined to be 47% by HPLC analysis on Chiralpak AD column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{major} = 10.63$ min, $t_{minor} = 12.80$ min; $[\alpha]_D^{20} = -53.6$ (*c* = 1.3 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.40-7.33$ (m, 3H), 7.02 (d, *J* = 6.8 Hz, 2H), 4.75 (dd, *J* = 6.8 Hz, *J* = 1.6 Hz, 1H), 4.03 (dd, *J* = 6.8 Hz, *J* = 1.6 Hz, 1H), 3.35 (dd, *J* = 5.2 Hz, *J* = 3.2 Hz, 1H), 2.73-2.71 (m, 2H), 2.46-2.39 (m, 1H), 2.16-2.09 (m, 1H), 1.88-1.81 (m, 1H), 1.44-1.37 (m, 1H), 1.18 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 182.8$, 138.6, 129.5, 128.4, 126.4, 110.6, 110.3, 94.6, 84.7, 47.7, 42.7, 42.5, 35.9, 25.6, 24.7, 22.9 ppm; ESI HRMS: calcd. for C₁₈H₁₇N₃O₂+Na⁺ 330.1213, found 330.1207.

6. Crystal data and structure refinement for enantiopure alcohol of 4g

	c = 16.888(5) A gamma = 90 deg.
Volume	1634.7(7) A^3
Z, Calculated density	4, 1.328 Mg/m^3
Absorption coefficient	0.240 mm^-1
F(000)	688
Crystal size	0.51 x 0.50 x 0.50 mm
Theta range for data collection	3.06 to 31.53 deg.
Limiting indices	-10<=h<=10, -19<=k<=15, -24<=l<=24
Reflections collected / unique	16028 / 5405 [R(int) = 0.0622]
Completeness to theta = 31.53	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8895 and 0.8875
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5405 / 0 / 222
Goodness-of-fit on F ²	1.002
Final R indices [I>2sigma(I)]	R1 = 0.0579, wR2 = 0.1405
R indices (all data)	R1 = 0.0652, $wR2 = 0.1455$
Absolute structure parameter	0.10(8)
Extinction coefficient	0.024(3)
Largest diff. peak and hole	0.283 and -0.271 e.A^-3

7. NMR spectra and HPLC chromatograms

22,375 2,375 2,2976 2,293 2,493 2,493 2,493 2,493 4,1,393 4,1,393 4,1,393 4,1,393 4,1,393 4,1,393 4,1,393 4,1,393 4,1,393 4,1,393 4,1,393 4,1,3944,1,394 4,1,394 4,1,3944,1,394 4,1,394 4,1,3944,1,394 4,1,3944,1,394 4,1,3944,1,394 4,1,3944,1,394 4,1,3944,1,394 4,1,3944,1,394 4,1,3944,1,394 4,1,3944,1,394 4,1,3944,1,394 4,1,3944,1,394 4,1,3944,1,394 4,1,3944,1,394 4,1,3944,1,394 4,1,3944,1,394 4,1,3944,1,394 4,1,3944,1,3944,1,

1	25.528	BV	0.9923	8.25961e4	1259.34399	98.3172
2	29.327	VBA	1.1595	1413.69324	17.80094	1.6828

Peak	RetTime	Type	Width	Are	ea	Hei	.ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
							·	
1	13.092	BB	0.5602	3.0635	56e4	838.	46545	49.7354
2	23.818	VBA	1.0895	3.0963	16e4	436.	53714	50.2646

	(min)	Area (*sec)	% Area	()	% Height
1	26.700	19525827	96.40	278969	96.60
2	31.714	729004	3.60	9805	3.40

		- 1					9		
#	[min]		[min]	mAU	*s	[mAU]	%	
1	8.440	VB	0.4488	6.0930	01e4	2066.8	38184	49.9668	
2	20.714	BBA	1.2357	6.1013	11e4	763.0	04572	50.0332	

Peak	RetTime	Туре	Width	Are	ea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	8.435	VB	0.4384	2797.	36377	97.	84207	2.7091
2	20.259	BBA	1.2243	1.004	60e5	1263.	97815	97.2909

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %
1	7.168	VV	0.3444	3.01849e4	1339.48206	50.7208
2	14.112	BB	0.7813	2.93269e4	580.76318	49.2792

ear	Recrime	Type	WIGCH	Area	neight	Area
#	[min]		[min]	mAU *s	[mAU]	clo Clo
1	7.178	VV	0.3619	1360.31458	55.46121	2.5016
2	14.036	BB	0.7854	5.30182e4	1042.76135	97.4984

Peak	RetTime	Туре	Width	Area		Height		Area	
#	[min]		[min]	mAU	*s	[mAU]	90	
									I
1	5.695	VV	0.2297	1.905	92e4	1342.	36780	49.9902	
2	7.575	VB	0.2601	1.906	66e4	1169.	37610	50.0098	

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %
					-	
1	5.697	VV	0.2299	2.89930e4	2039.22522	96.8512
2	7.597	VB	0.2915	942.6137	7 49.61486	3.1488

2	10.115 VV	0.5358	3.19413e4	914.05096	51.1012	

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	8.474	VV	0.5864	461.44046	11.04608	3.1035
2	10.137	VB	0.5299	1.44069e4	418.33609	96.8965

Peak 1	RetTime	Туре	Width	A	rea	Heig	Jht	Area
#	[min]		[min]	mAU	*s	[mAU]	8
-		-						
1	16.697	VB	0.6058	1930	.58850	48.3	82963	51.6377
2	19.948	BB	0.7212	1808	.12939	38.1	9479	48.3623

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %
					·	
1	16.481	VV	0.5676	1.74194e4	462.42593	92.0742
2	19.717	MM	0.9400	1499.46558	26.58686	7.9258

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 mAU
 *s
 [mAU]
 %

 --- ---- ---- ----- ----- -----

 1
 8.857
 VV
 0.3897
 7218.44482
 278.52066
 50.4851

 2
 12.151
 VB
 0.5419
 7079.72900
 199.63078
 49.5149

Peak	RetTime	Type	Width	Area		Height		Area	
#	[min]		[min]	mAU *	S	[mAU]	엄	
1	8.799	VV	0.4054	8.52341	e4	3245.	43091	97.0739	
2	12.145	VB	0.5213	2569.17	773	75.	12193	2.9261	

reak	Recitie	туре	WIGCH	Area	L	HEIGHL		Area	
#	[min]		[min]	mAU *	S	[mAU]	olo	
									I
1	9.722	VB	0.5389	2.38853	le4	678.	40619	49.9173	
2	14.884	BB	0.9025	2.39645	e4	410.	44202	50.0827	

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	90
1	9.755	VB	0.5486	6.148	83e4	1730.	18323	96.8671
2	15.106	BB	0.8924	1988.	69312	34.	57166	3.1329

	RT (min)	Area (*sec)	% Area	Height	% Height
1	19.247	2359080	95.23	48876	96.49
2	28.497	118104	4.77	1780	3.51

ear	Retiine	Type	width	Area		nerght		Area	
#	[min]		[min]	mAU	*s	[mAU]	de	
									l
1	17.617	BV	1.5892	7.205	20e4	665.5	51752	49.9377	
2	23.591	VB	1.5056	7.223	18e4	740.0	07532	50.0623	

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	윰
1	17.313	BV	1.6570	1.02	612e5	899.5	53992	93.0029
2	24.013	VB	1.5007	7720	.04492	78.6	53197	6.9971

reak	recitile	rybe	WIGCH	Area		nergiic		Area	
#	[min]		[min]	mAU	*s	[mAU]	90	
1	12.251	MM	0.5035	9200.	94629	304.	55545	97.9628	
2	19.867	MM	0.6846	191.	33849	4.	65794	2.0372	

