Supramolecular gels for the remediation of reactive organophosphorus compounds

Jennifer R. Hiscock,^{*a*} Isabelle L. Kirby^{*a*}, Julie Herniman^{*a*}, G. John Langley^{*a*}, Alistair J. Clark^{*a*}, and Philip A. Gale^{**a*}

^{*a*} School of Chemistry, University of Southampton, Southampton, UK SO17 1BJ. E-mail: <u>philip.gale@soton.ac.uk</u>; Fax: +44 (0)23 8059 6805; Tel: +44 (0)23 8059 3322.

Electronic Supplementary Information

Experimental

General remarks: All reactions were performed under slight positive pressure of nitrogen using ovendried glassware. All solvents and starting materials were purchased from chemical stores where available. Commercial grade reagents have been used without further purification. ¹H NMR (500 MHz) and ¹³C {¹H} NMR (125 MHz) were determined on a Bruker AV III HD 500 spectrometer , ¹H NMR (400 MHz), ³¹P {¹H} NMR (162 MHz) and ¹³C {¹H} NMR (100 MHz) were determined on a Bruker AV II 400 or AV III HD 400 spectrometer with the chemical shifts reported in parts per million (ppm), calibrated to the centre of the solvent peak set. Some ¹³C peaks are missing due to overlapping signals. The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. Infrared (IR) spectra were recorded on a Matterson Satellite (ATR), and reported in wavenumbers (cm⁻¹). Low resolution mass spectra were recorded on a Waters Acquity UHPLC-MS system. High resolution mass spectra were recorded on a Bruker Maxis ESI-TOF system by the mass spectrometry service at the University of Southampton. Melting points were recorded in open capillaries on a Gallenkamp melting point apparatus and are uncorrected. SEM images were collected on a FEI XL30 ESEM in low pressure mode. Samples were prepared on aluminium stubs using self adhesive carbon tabs. Details of individual image collection can be seen in Figure S20.

Compound 2 Undecanoic acid (0.50 g, 2.68 mM) was heated at reflux with carbonyldiimidazole (CDI) (0.46 g, 2.82 mM) for 2 hrs in chloroform (40 mL). (1*R*,2*R*)-(-)-1,2-Cyclohexanediamine (0.15 g, 1.34 mM) was then added to the solution which was heated at reflux overnight under. The mixture was then washed with water (2 x 100 mL) and then dried with MgSO₄. The organic phase was then taken to dryness and dissolved in the minimum amount of hot methanol. A white solid formed as the solution cooled, this was isolated by filtration and washed with cold methanol (20 ml). Yield: 57 % (0.34 g, 0.79 mM); mp: 172 °C; ¹H NMR (400 MHz, CDCl₃): δ : 0.87 (t, J = 6.08 Hz, 6H), 1.25 (br s, 32H), 1.56 (br s, 4H), 1.74 (d, J = 8.16 Hz, 2H), 2.02 (d, J = 12.08 Hz, 2H), 2.10 (dd, J₁ = 11.60 Hz, J₂ = 6.96 Hz, 4H), 3.65 (br s, 2H), 5.93 (d, J = 4.40 Hz, 2H, amide NH); ¹³C NMR (100 MHz, CDCl₃): δ : 14.2 (CH₃), 22.8 (CH₂), 24.9 (CH₂), 26.0 (CH₂), 29.5 (CH₂), 29.5 (CH₂), 29.5 (CH₂), 29.7 (CH₂), 32.0 (CH₂), 32.5 (CH₂), 37.1 (CH₂), 53.8 (CH), 174.0 (CO); IR (film): v = 3270 (amide NH stretching), 3080 (amide NH stretching), 1640 (amide CO stretching), 1540 (amide CO stretching); LRMS (ESI⁺): m/z: 451 [M+H]⁺; HRMS (ESI⁺) for C₂₈H₅₄N₂NaO₂: m/z: act: [M+Na]⁺ 478.4068, cal: [M+Na]⁺ 473.4078, $\Delta\delta$ (ppm) = 2.0.

Compound 1 was synthesised by the same general method given for compound **2**. Decanoic acid (0.50 g, 2.90 mM), CDI (0.49, 3.00 mM), (1R,2R)-(-)-1,2-Cyclohexanediamine (0.17 g, 1.45 mM). Yield: 38 % (0.24 g, 0.56 mM). ¹H NMR spectrum was found to match that previously published by Sato and co-workers.¹

Compound 3 was synthesised by the same general method given for compound **2**. Dodecanoic acid (0.50 g, 2.50 mM), CDI (0.42, 2.60 mM), (1*R*,2*R*)-(-)-1,2-Cyclohexanediamine (0.14 g, 1.25 mM). Yield: 58 % (0.35 g, 0.73 mM). ¹H NMR spectrum was found to match that previously published by Esch and co-workers.²

Compound 4 was synthesised by the same general method given for compound **2**. Tridecanoic acid (0.50 g, 2.33 mM), CDI (0.40, 2.45 mM), (1*R*,2*R*)-(-)-1,2-Cyclohexanediamine (0.13 g, 1.17 mM). Yield: 79 % (0.47 g, 0.92 mM); mp: 168 °C; ¹H NMR (400 MHz, CDCl₃): δ: 0.88 (t, J = 6.00 Hz, 6H), 1.25 (br s, 40H), 1.57 (br s, 4H), 1.74 (d, J = 7.96 Hz, 2H), 2.02 (d, J = 12.24 Hz, 2H), 2.11 (dd, J₁ = 11.36 Hz, J₂ = 7.08 Hz, 4H), 3.65 (br s, 2H), 5.90 (br s, 2H, amide NH); ¹³C NMR (100 MHz, CDCl₃): δ: 14.6 (CH₃), 23.1 (CH₂), 25.2 (CH₂), 26.3 (CH₂), 29.8 (CH₂), 29.8 (CH₂), 29.9 (CH₂), 30.0 (CH₂), 30.1 (CH₂), 30.1 (CH₂), 32.4 (CH₂), 37.4 (CH₂), 54.1 (CH), 174.4 (CO); IR (film): v = 3270 (amide NH stretching), 3080 (amide NH stretching), 1640 (amide CO stretching); LRMS (ESI⁺): m/z: 507 [M+H]⁺; HRMS (ESI⁺) for C₃₂H₆₃N₂O₂: m/z: act: [M+H]⁺ 507.4878, cal: [M+H]⁺ 507.4884, Δδ (ppm) = 1.3. Although previously published by Kimura, Shirai and co-workers³ full characterisation of this compound was performed.

Figure S1¹H NMR spectrum of compound 1 in CDCl₃.

Figure S2 ¹H NMR spectrum of compound 2 in CDCl₃.

Figure S3 ¹H NMR spectrum of compound 3 in CDCl₃.

Figure S4 ¹H NMR spectrum of compound 4 in CDCl₃.

Addition of DCP/HCI/EP to warmed gelation solutions of compounds 1-4 in pyridine. The pyridine gels were prepared using a standard method. The gelator was heated in a sealed vial with pyridine until all the solid had dissolved. The gel solution was then allowed to cool to 30-40 °C, at this point just before gelation occurs the DCP/HCI/EP was added to the solution. The gels were then cooled to room temperature and inverted to check to see if a gel had formed. The results of these experiments are shown in Tables S10-S15.

Gelator		Amount of gelator in 1 mL of gel (mmol)							
	25 mg	20 mg	15 mg	10 mg	5.0 mg	4.0 mg	3.0 mg	2.5 mg	2.0 mg
1	0.059	0.047	0.035	0.024	0.012	0.009	0.007	0.006	0.005
2	0.055	0.044	0.033	0.022	0.011	0.009	0.007	0.006	0.004
3	0.052	0.042	0.031	0.021	0.010	0.008	0.006	0.005	0.004
4	0.049	0.039	0.029	0.020	0.010	0.008	0.006	0.005	0.004
Phosphonate		Amount of phosphonate added (mmol)							
	1.00	0 mL) mL 0.10		0.050) mL	0.010 mL	0.0	01 mL
DCP	6.	955	0	.695	0.3	48	0.070	0	.007
DMMP	9.	228	0	.923	0.4	61	0.092	0	.009

Table S1 Amount of gelator, compound 1 (mmol) and added phosphonate (mmol).

Concentration of	Solvent		
gelator (mg/mL)	Pyridine	TEA	
25.0	No gel	NA	
20.0	No gel	Gel	
15.0	NA	NA	
12.0	NA	NA	
10.0	NA	Gel	
9.0	NA	NA	
8.0	NA	NA	
7.0	NA	NA	
6.0	NA	NA	
5.0	NA	Gel	
4.0	NA	Gel	
3.0	NA	Partial gel	
2.5	NA	Partial gel	
2.0	NA	NA	
1.0	NA	NA	

Table S2: Formation of gels with compound 1, all experiments were performed with 1 mL of the solvent stated.

F

Table S3: Formation of gels with compound 2, all experiments were performed with 1 mL of the solvent stated.

Concentration of	Solvent			
gelator (mg/mL)	Pyridine	TEA		
25.0	No gel	NA		
20.0	No gel	Gel		
15.0	NA	NA		
12.0	NA	NA		
10.0	NA	Gel		
9.0	NA	NA		
8.0	NA	NA		
7.0	NA	NA		
6.0	NA	NA		
5.0	NA	Gel		
4.0	NA	Partial gel		
3.0	NA	Partial gel		
2.5	NA	Partial gel		
2.0	NA	NA		
1.0	NA	NA		

Concentration of	Solvent		
gelator (mg/mL)	Pyridine	TEA	
25.0	Gel	NA	
20.0	Gel	Gel	
15.0	Gel	Gel	
14.0	Gel	NA	
13.0	Gel	NA	
12.0	Partial gel	NA	
11.0	Partial gel	NA	
10.0	No gel	Gel	
9.0	NA	NA	
8.0	NA	Gel	
7.0	NA	NA	
6.0	NA	Gel	
5.0	NA	NA	
4.0	NA	Gel	
3.0	NA	Gel	
2.5	NA	NA	
2.0	NA	Partial gel	
1.0	NA	NA	

Table S4: Formation of gels with compound 3, all experiments were performed with 1 mL of the solvent stated.

Table S5: Formation of gels with compound 4, all experiments were performed with 1 mL of the solvent stated.

Concentration of	Solvent			
gelator (mg/mL)	Pyridine	TEA		
25.0	NA	NA		
20.0	Gel	Gel		
15.0	NA	NA		
12.0	NA	NA		
10.0	Gel	Gel		
9.0	Gel	NA		
8.0	Gel	NA		
7.0	Gel	NA		
6.0	Partial gel	NA		
5.0	No gel	Gel		
4.0	NA	Gel		
3.0	NA	Partial gel		
2.5	NA	Partial gel		
2.0	NA	NA		
1.0	NA	NA		

Table S6: Formation of gels with compound 1, all experiments were performed with 1 mL of the solvent stated.

Concentration of	Solvent			
gelator (mg/mL)	DMMP	DCP		
40.0	NA	No Gel		
20.0	Gel	NA		
10.0	Gel	NA		
5.0	Gel	NA		
4.0	Partial Gel	NA		
3.0	Partial Gel	NA		
2.5	No Gel	NA		

Concentration of	Solvent		
gelator (mg/mL)	DMMP	DCP	
40.0	NA	No Gel	
20.0	Gel	NA	
10.0	Gel	NA	
5.0	Gel	NA	
4.0	Gel	NA	
3.0	Gel	NA	
2.5	Partial Gel	NA	

Table S7: Formation of gels with compound 2, all experiments were performed with 1 mL of the solvent stated.

Table S8: Formation of gels with compound 3, all experiments were performed with 1 mL of the solvent stated.

Concentration of	Solvent		
gelator (mg/mL)	DMMP	DCP	
40.0	NA	Partial Gel/	
		Precipitation	
20.0	Gel	Partial Gel	
10.0	Gel	NA	
5.0	Gel	NA	
4.0	Gel	NA	
3.0	Gel	NA	
2.5	Partial Gel	NA	

Table S9: Formation of gels with compound 4, all experiments were performed with 1 mL of the solvent stated.

Concentration of	Solvent			
gelator (mg/mL)	DMMP	DCP		
40.0	NA	No Gel		
20.0	Gel	NA		
10.0	Gel	NA		
5.0	Gel	NA		
4.0	Gel	NA		
3.0	Gel	NA		
2.5	Partial Gel	NA		

Table S10: Reactions containing compounds 2/3 and/or pyridine with the addition of various additives, as well as the reactions of the solvents TEA and pyridine with the addition of various additives. Reactions were carried out over a time frame > 12 hrs.

Solvent	Gelator	Conc.	Additive	Response
		(mg/mL)	(mL)	
TEA	NA		HC1	White solid produced (HCl salt)
			(0.1)	
TEA	NA		EP (0.1)	Immiscible
TEA	NA		DCP	Solid/gel produced, yellow in colour, no solution, passed
			(0.1)	inversion test
Pyridine	NA		HC1	No visible changes
-			(0.1)	
Pyridine	NA		EP (0.1)	No visible changes
Pyridine	NA		DCP	Very slight yellowing of the solution
-			(0.1)	
Pyridine	3	20	EP (0.1)	Colourless gel formed with the incorporation in EP into
				the gel. No change noted over time.
Pyridine	4	20	EP (0.1)	Colourless gel formed with the incorporation in EP into
				the gel. No change noted over time.
NA	2	40	DCP	Slight yellowing of the solution when left at room
			(1.0)	temperature overnight
NA	3	40	DCP	Slight yellowing of the solution when left at room
			(1.0)	temperature overnight

Table S11: DCP (0.1 mL) addition to a warmed solution of compounds **1**, **2**, **3** and **4** (20 mg) in pyridine (1 mL). Time (T=0) is considered to be the point at which the DCP is added to the warmed pyridine/gelator solution. All experiments were run for a minimum of 18 hrs. At the end of the experiment each gel was found to have degraded into a solution and all samples were red in colour.

Compound/	DCP	Time	Observation
Gelator	(mL)	(mins)	
1	0.1	< 1	Light pink solution
1	0.1	5	Light pink solution
1	0.1	20	Light pink solution
2	0.1	<1	Light yellow solution
2	0.1	5	Light yellow solution
2	0.1	20	Light yellow solution
3	0.1	0	DCP added to warmed solution
3	0.1	3	Colourless gel formed
3	0.1	30	Yellow gel formed
3	0.1	60	Orange solution most of the gel dissolved
3	0.1	90	Darkening of orange solution – no gel
3	0.1	1080	Dark red solution
4	0.1	< 1	Almost immediate colourless, clear gel formation
4	0.1	5	Slight clouding of gel
4	0.1	20	Slight yellowing of gel
4	0.1	30	Increasing strength of colour
4	0.1	60	Increasing strength of colour
4	0.2	< 1	Almost immediate colourless, slightly opaque gel formation
4	0.2	5	Slight yellowing of gel
4	0.2	20	Increasing strength of colour
4	0.2	30	Increasing strength of colour
4	0.2	60	Orange gel some degradation into an orange solution
4	0.3	< 1	Immediate clear, colourless gel formation upon DCP addition
4	0.3	5	Slight yellowing of gel
4	0.3	20	Increasing strength of colour
4	0.3	30	Increasing strength of colour, some gel degradation
4	0.3	60	Orange gel approx. 2/3 degradation into an orange solution
4	0.4	< 1	Immediate clear, colourless gel formation upon DCP addition
4	0.4	5	Slight yellowing of gel
4	0.4	20	Increasing strength of colour
4	0.4	30	Increasing strength of colour, some gel degradation
4	0.4	60	Most of the gel degraded into an orange solution, orange gel
4	0.5	< 1	Immediate clear, colourless gel formation upon DCP addition
4	0.5	5	Slight yellowing of gel
4	0.5	20	Increasing strength of colour
4	0.5	30	Increasing strength of colour, some gel degradation
4	0.5	60	Complete degradation of orange gel into orange solution
4	1.0	< 1	Immediate clear, colourless gel formation upon DCP addition
4	1.0	5	Slight yellowing of gel
4	1.0	20	Partial gei only, some yellowing of solution and partial gel
4	1.0	30	Most of the gel degraded into an orange solution, orange gel
4	1.0	60	Complete degradation of orange gel into orange solution, some solid

Table S12: Conc. HCl addition to a warmed solution of compound **1** in pyridine (1 mL). Time (T=0) is considered to be the point at which the HCl is added to the warmed pyridine/gelator solution.

Compound/	Amount	HCl	Time	Observation
Gelator	(mg/mL)	(mL)	(mins)	
1	20	0.05	5	Yellow gel
1	20	0.1	5	Yellow solution
1	20	0.05	30	Yellow gel
1	20	0.1	30	Partial yellow gel
1	20	0.05	60	Yellow gel
1	20	0.1	60	Yellow gel
1	20	0.05	1360	Yellow gel
1	20	0.1	1360	Yellow gel

Table S13: Conc. HCl addition to a warmed solution of compound **2** in pyridine (1 mL). Time (T=0) is considered to be the point at which the HCl is added to the warmed pyridine/gelator solution.

Compound/	Amount	HCl	Time	Observation
Gelator	(mg/mL)	(mL)	(mins)	
2	20	0.05	5	Yellow gel
2	20	0.1	5	Yellow gel
2	20	0.05	1040	Yellow gel
2	20	0.1	1040	Yellow gel

Table S14: Conc. HCl addition to a warmed solution of compound **3** in pyridine (1 mL). Time (T=0) is considered to be the point at which the HCl is added to the warmed pyridine/gelator solution.

Compound/	Amount	HCl	Time	Observation
Gelator	(mg/mL)	(mL)	(mins)	
3	20	0.05	5	Yellow gel
3	20	0.1	5	Yellow gel
3	20	0.05	1230	Yellow gel
3	20	0.1	1230	Yellow gel

Table S15: Conc. HCl addition to a warmed solution of compound **4** in pyridine (1 mL). Time (T=0) is considered to be the point at which the HCl is added to the warmed pyridine/gelator solution.

Compound/	Amount	HCl	Time	Observation
Gelator	(mg/mL)	(mL)	(mins)	
4	20	0.05	5	Yellow gel
4	20	0.1	5	Yellow gel
4	20	0.05	1040	Yellow gel
4	20	0.1	1040	Yellow gel

Figure S5 ¹H NMR spectrum compound 3 (25 mg/mL) in pyridine- d_5 .

Figure S6¹H COSY NMR spectrum compound 3 (25 mg/mL) in pyridine-*d*₅.

been highlighted, B) same sample as A reacted with DCP (0.1 mL), C) with DCP only (0.1 mL).

Southampton

Chemistry - maXis HPLC-ESI Accurate Mass Report

Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Chemistry soton lcms pos 120 JH 7191 + DCP dil Analyst: JMH	Acquisition Date 7_01_10532.d Operator Instrument / Ser#	Acquisition Date 07/02/2014 17: 01_10532.d Operator MSWEB@SOT Instrument / Ser# maXis			
Acquisition Par	rameter					
Source Type	ES	Ion Polarity	Positive	Set Nebulizer	r	2.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heat	er	200 °C
Scan Begin	120 m/z	Set End Plate Offset	-500 V	Set Dry Gas		8.0 l/min
Scan End	1500 m/z	Set Collision Cell RF	300.0 Vpp	Set Divert Va	ive	Waste

+MS, 4.5-4.6min #(271-274)

Chemistry - maXis HPLC-ESI Accurate Mass Report

Meas. m/z	Formula	m/z	err [ppm]	err [mDa]	# Sigma	mSigma	rdb	e ⁻ Conf	N-Rule
637.4678	C 37 H 58 N 8 Na	637.4677	-0.2	-0.2	1	86.6	12.5	even	ok
	C 38 H 61 N 4 O 4	637.4687	1.4	0.9	2	86.7	10.5	even	ok
	C 37 H 65 O 8	637,4674	-0.7	-0.4	3	98.7	5.5	even	ok
	C 34 H 67 N 2 Na O 5 P	637.4680	0.2	0.2	4	113.3	2.5	even	ok
	C 32 H 62 N 8 O 3 P	637.4677	-0.2	-0.1	5	114.2	6.5	even	ok
	C 22 H 54 N 20 Na O	637.4682	0.5	0.3	6	172.8	5.5	even	ok
	C 21 H 58 N 16 Na O 5	637.4668	-1.6	-1.0	7	185.4	0.5	even	ok
	C 19 H 53 N 22 O 3	637.4666	-2.0	-1.3	8	186.6	4.5	even	ok

Samples were analysed using a MaXis (Bruker Daltonics, Bremen, Germany) mass spectrometer equipped with a Time of Flight (TOF) analyser. Samples were introduced to the mass spectrometer via a Dionex Ultimate 3000 autosampler and uHPLC pump. Gradient 20% acetonitrile (0.1% formic acid) to 100% acetonitrile (0.1% formic acid) in five minutes. Column, Acquity UPLC BEH C18 (Waters) 1.7 micron 50 x 2.1mm. High resolution mass spectra were recorded using positive/negative ion electrospray ionisation.

Figure S9 HRMS of compound **5** obtained from a reaction mixture of compound **3** (10 mg), DCP (0.1 mL) in Pyridine (1 mL).

Waste

Chemistry - maXis ESI Accurate Mass Report

Analysis Info				Acquisition Date	07/02/2014 17:30:16		
Analysis Name Method Sample Name Comment	D:\Data\Chemistry\20 soton lcms pos 120 to JH 7191 + DCP dilute Analyst: JMH	014\Feb14\JH 7191 + DC o 1500.m ed	P diluted_BC7_	01_10532.d Operator Instrument / Ser#	MSWEB maXis	@SOTON.AC.UK 17	
Acquisition Para	ameter						-
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	r	2.0 Bar	
Focus	Not active	Set Capillary	4000 V	Set Dry Heat	er	200 °C	
Scan Begin	120 m/z	Set End Plate Offset	-500 V	Set Dry Gas		8.0 I/min	

Set Collision Cell RF

300.0 Vpp

Set Divert Valve

+MS, 3.0-3.0min #(179-182)

1500 m/z

Scan End

Chemistry - maXis ESI Accurate Mass Report

Samples were analysed using a MaXis (Bruker Daltonics, Bremen, Germany) mass spectrometer equipped with a Time of Flight (TOF) analyser. High resolution mass spectra were recorded using positive/negative ion electrospray ionisation.

Figure S10 HRMS of compound **6** obtained from a reaction mixture of compound **3** (10 mg), DCP (0.1 mL) in Pyridine (1 mL).

Chemistry - maXis ESI Accurate Mass Report

Analysis Info			Acquisition Date	07/02/2014 17:30:16		
Analysis Name D:\Data\Chemistry\2014\Feb14\JH 7191 + DCP diluted_BC7_(Method soton lcms pos 120 to 1500.m Sample Name JH 7191 + DCP diluted Comment Analyst: JMH			Operator Operator Instrument / Ser#	MSWEB@SOTON.AC.UK maXis 17		
Acquisition Par	rameter					—
Source Type Focus	ESI Not active	Ion Polarity Set Capillary	Positive 4000 V	Set Nebulizer Set Dry Heate	r 2.0 Bar er 200 °C	
Scan Begin Scan End	120 m/z 1500 m/z	Set End Plate Offset Set Collision Cell RF	-500 V 300.0 Vpp	Set Dry Gas Set Divert Va	8.0 l/min lve Waste	

+MS, 3.0-3.0min #(178-182)

Chemistry - maXis ESI Accurate Mass Report

Samples were analysed using a MaXis (Bruker Daltonics, Bremen, Germany) mass spectrometer equipped with a Time of Flight (TOF) analyser. High resolution mass spectra were recorded using positive/negative ion electrospray ionisation.

Figure S11 HRMS of compound 7 obtained from a reaction mixture of compound **3** (10 mg), DCP (0.1 mL) in Pyridine (1 mL).

Southampton

Chemistry - maXis ESI Accurate Mass Report

Analysis Info			Acquisition Date		07/02/2014 17:30:16	
Analysis Name Method Sample Name	D:\Data\Chemistry\ soton lcms pos 120	2014\Feb14\JH 7191 + DC) to 1500.m uted	7_01_10532.d Operator	MSWEB@SOTON.AC.UK		
Comment	Analyst: JMH					
Acquisition Par	ameter					
Source Type Focus Scan Begin Scan End	ESI Not active 120 m/z 1500 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4000 V -500 V 300.0 Vpp	Set Nebulizer Set Dry Heat Set Dry Gas Set Divert Va	er 2.0 Bar er 200 °C 8.0 l/min lve Waste	

+MS, 4.6-4.6min #(272-275)

Chemistry - maXis ESI Accurate Mass Report

Samples were analysed using a MaXis (Bruker Daltonics, Bremen, Germany) mass spectrometer equipped with a Time of Flight (TOF) analyser.High resolution mass spectra were recorded using positive/negative ion electrospray ionisation.

Figure S12 HRMS of compound 8 obtained from a reaction mixture of compound 3 (10 mg), DCP (0.1 mL) in Pyridine (1 mL).

Chemistry - maXis HPLC-ESI Accurate Mass Report

Analysis info				Acquisition Date	07/02/2	014 17:30:16
Analysis Name Method Sample Name	D:\Data\Chemistry\ soton icms pos 120 JH 7191 + DCP dilu	2014\Feb14\JH 7191 + DC to 1500.m ited	P dlluted_BC7	_01_10532.d Operator Instrument / Ser#	MSWEI maXis	B@SOTON.AC.UK 17
Comment	Analyst: JMH					
Source Type	ESI	ion Polarity	Positive	Set Nebulzer		2.0 Bar
Focus Scan Begin Scan End	Not active 120 m/z 1500 m/z	Set Capillary Set End Plate Offset Set Collision Cell RF	4000 V -500 V 300.0 Vpp	Set Dry Heat Set Dry Gas Set Divert Va	er ive	200 °C 8.0 l/min Waste

+MS, 2.3-2.3min #(137-140)

Samples were analysed using a MaXis (Bruker Daltonics, Bremen, Germany) mass spectrometer equipped with a Time of Flight (TOF) analyser. Samples were introduced to the mass spectrometer via a Dionex Ultimate 3000 autosampler and uHPLC pump. Gradient 20% acetonitrile (0.1% formic acid) to 100% acetonitrile (0.1% formic acid) in five minutes. Column, Acquity UPLC BEH C18 (Waters) 1.7 micron 50 x 2.1mm. High resolution mass spectra were recorded using positive/negative ion electrospray ionisation.

Figure S13 HRMS of compound **9** obtained from a reaction mixture of compound **3** (10 mg), DCP (0.1 mL) in Pyridine (1 mL).

Table 2 High resolution mass spectrometry data obtained from the reaction of gelator **3** (10 mg/mL) and DCP (0.1 mg) in pyridine (1 mL).

Ion	Experime	Calculated	Retention time
	ntal value	value (m/z)	(min.)
	(m/z)		
$[5 + Na]^+$	637.4678	637.4680	4.5-4.6
[6] ⁺	540.4880	540.4887	3.0
[7] ⁺	461.4463	461.4465	3.0
$[8 + H]^+$	461.4465	461.4465	4.6
$[8 + Na]^+$	483.4280	483.4285	4.6
$[9a^{a} + H]^{+}$	279.2791	279.2795	2.3

 a^{a} – compound **9a** is to be taken as the neutral form of compound **9**.

Figure S14a ³¹P NMR of five coloured fractions isolated by preparative TLC from the reaction of compound **3** (20 mg), pyridine (1 mL) and DCP (0.1 mL) in a mixture of CDCl₃:DMSO- d_6 9:1. The phosphorus signals are highlighted in red.

TIC, NL 8.518E07, MS2 (150:1500) ES+

Figure S14b LRMS of fraction diethylphosphate isolated by preparative TLC (fraction E) from the reaction of compound **3** (20 mg), pyridine (1 mL) and DCP (0.1 mL).

Figure S14c ¹H NMR of five coloured fractions isolated by preparative TLC from the reaction of compound **3** (20 mg), pyridine (1 mL) and DCP (0.1 mL) in a mixture of $CDCl_3:DMSO-d_6$ 9:1. The pyridyl signals are highlighted in red and the solvent signals are highlighted in blue.

Figure S15a COSY of fraction A as described in Figure 14a.

Figure S15b COSY of fraction B as described in Figure 14a.

Figure S15c COSY of fraction C as described in Figure 14a.

Figure S15d COSY of fraction D as described in Figure 14a.

Figure S15e COSY of fraction E as described in Figure 14a.

Figure S16 Enlargement of Figure 1 giving experimental details of individual experiments.

References

- 1.
- H. Sato, T. Nakae, K. Morimoto and K. Tamura, *Org. Biomol. Chem.*, 2012, **10**, 1581-1586. N. Zweep, A. Hopkinson, A. Meetsma, W. R. Browne, B. L. Feringa and J. H. van Esch, *Langmuir*, 2. 2009, 25, 8802-8809.
- M. Kimura, T. Kitamura, T. Muto, K. Hanabusa, H. Shirai and N. Kobayashi, Chem. Lett., 2000, 1088-3. 1089.