Supporting Information

Controlled fragrance release from galactose-based profragrances

Tobias Kuhnt^a, Andreas Herrmann^b, Daniel Benczédi^b, Christoph Weder^{a*} and E. Johan Foster^{a,c*}

 ^aAdolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
^bFirmenich SA, Division Recherche et Développement, B.P. 239, CH-1211 Genève 8, Switzerland
^cVirginia Tech, Department of Materials Science & Engineering, 445 Old Turner Street, 213 Holden Hall, Blacksburg VA 24061, USA

Figure S 1. ¹H-NMR of (±)-2-((4-Oxo-4-((1RS,2SR)-2,6,6-trimethylcyclohex-3-en-1-yl)butan-2-yl)thio)acetic acid (1) in CDCl₃ at 300 MHz.

Figure S 2. ¹³C-NMR of (\pm)-2-((4-Oxo-4-((1RS,2SR)-2,6,6-trimethylcyclohex-3-en-1-yl)butan-2-yl)thio)acetic acid (1) in CDCl₃ at 300 MHz.

Figure S 3. ¹H-NMR of ((3aR,5R,5aR,8aS,8bR)-2,2,7,7-Tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methyl 2-((4-oxo-4-((1RS,2SR)-2,6,6-trimethylcyclohex-3-en-1-yl)butan-2-yl)thio)acetate (**2**) in MeOH-D₄ at 300 MHz.

Figure S 4. ¹³C-NMR of ((3aR, 5R, 5aR, 8aS, 8bR) - 2, 2, 7, 7-Tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4, 5-b:4', 5'-d]pyran-5-yl)methyl 2-((4-oxo-4-((1RS, 2SR) - 2, 6, 6-trimethylcyclohex-3-en-1-yl)butan-2-yl)thio)acetate (**2**) in CDCl₃ at 300 MHz.

Figure S 5. ¹H-NMR of ((2R, 3S, 4S, 5R, 6S)-3, 4, 5, 6-Tetrahydroxytetrahydro-2H-pyran-2-yl)methyl 2-((4-oxo-4-((1RS, 2SR)-2, 6, 6 trimethylcyclohex-3-en-1-yl)butan-2-yl)thio)acetate (**3**) in MeOH-D₄ at 300 MHz.

Figure S 6. ¹³C-NMR of ((2R, 3S, 4S, 5R, 6S)-3, 4, 5, 6-Tetrahydroxytetrahydro-2H-pyran-2-yl)methyl 2-((4-oxo-4-((1RS, 2SR)-2, 6, 6 trimethylcyclohex-3-en-1-yl)butan-2-yl)thio)acetate (**3**) in MeOH-D₄ at 300 MHz.

Figure S 7. IR spectra of (±)-2-((4-Oxo-4-((1RS,2SR)-2,6,6-trimethylcyclohex-3-en-1-yl)butan-2-yl)thio)acetic acid (1).

Figure S 8. IR spectra of ((3a*R*,5*R*,5a*R*,8a*S*,8b*R*)-2,2,7,7-Tetramethyltetrahydro-3a*H*-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methyl 2-((4-oxo-4-((1*RS*,2*SR*)-2,6,6-trimethylcyclohex-3-en-1-yl)butan-2-yl)thio)acetate (**2**).

Figure S 9. IR spectra of ((2*R*,3*S*,4*S*,5*R*,6*S*)-3,4,5,6-Tetrahydroxytetrahydro-2H-pyran-2-yl)methyl 2-((4-oxo-4-((1*RS*,2*SR*)-2,6,6 trimethylcyclohex-3-en-1-yl)butan-2-yl)thio)acetate (**3**).

Figure S 10. Overlaid GC traces, showing the released fragrance for the 8 recorded time intervals from the protected pro-fragrance in the softener test.

Buffer preparation:

Buffer solutions (10 mL) were prepared according to previous established protocols¹ using reagent grade chemicals from Sigma-Aldrich: boric acid (anhydrous), citric acid (anhydrous), sodium hydrogen phosphate (Na₂HPO₄), monopotassium phosphate (KH₂PO₄), sodium hydroxide (NaOH) and deuterium oxide (D₂O). A 0.1 M sodium hydroxide solution was prepared by dissolving 0.4 g NaOH in 10 mL of D₂O. A buffer of pH 4 was prepared by dissolving 107.5 mg of citric acid, 25.7 mg NaCl and 0.68 mL NaOH_{aq} (0.1 M) in 10 mL of D₂O. The buffer of pH 7 was prepared by dissolving 35.2 mg KH₂PO₄ and 72.6 mg Na₂HPO₄ in D₂O (10 mL). Buffer of pH 10 was prepared by dissolving 47.7 mg of boric acid and 1.8 mL of NaOH_{aq} (0.1 M) in D2O (10 mL).

1. W. R. Carmody, *Journal of Chemical Education*, 1961, **38**, 559-560.