Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Transition metal-catalyzed redox isomerization of codeine and morphine in water

Antonio Bermejo Gómez,^[a,b] Pär Holmberg, ^[c] Jan-E. Bäckvall,^[a,b] and Belén Martín-Matute*^[a,b]

- [a] Dr A. Bermejo Gómez, Prof. Jan-E. Bäckvall and Prof. B. Martín-Matute Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden. Fax: (+) 46815 49 08 E-mail: belen@organ.su.se
- [b] Dr A. Bermejo Gómez, Prof. Jan-E. Bäckvall and Prof. B. Martín-Matute Berzelii Center EXSELENT on Porous Materials Stockholm University, SE-106 91 Stockholm, Sweden.
- [c] Dr Pär Holmberg
 Cambrex Karlskoga AB,
 SE-691 85 Karlskoga, Sweden.
 Fax: (+) 46596 78 3129
 E-mail: par.holmberg@cambrex.com

Table of Contents for Supporting Information

- **S3** General information
- S4 Synthesis and characterization of hydrocodone (3)
- S5 Synthesis and characterization of hydromorphone (4)
- S6 Synthesis of hydrocodone (3) in 100 g scale
- **S7** ¹H NMR spectrum of hydrocodone (**3**)
- **S8** ¹³C NMR spectrum of hydrocodone (**3**)
- **S9** ¹H NMR spectrum of hydromorphone (4)
- **S10** ¹³C NMR spectrum of hydromorphone (4)
- **S11** ¹H NMR spectrum of hydrocodone (**3**) from 100 g scale experiment
- S12 UPLC chromatograms of hydrocodone (3) from 100 g scale experiments

General Information:

All transition metal-catalyzed reactions were carried out in sealed glass-vials under an atmosphere of nitrogen. Reagents were used as obtained from commercial suppliers without further purification.

Reactions in 100 g scale were carried out in a 1 L jacketed cylindrical reactor, diameter 100 mm; Manufacturer: G. Diehm (accessories: turbine stirrer, 70 mm diameter; immersed temperature pocket / baffle, 10 mm diameter).

¹H NMR spectra were recorded at 400 MHz; ¹³C NMR spectra were recorded at 100 MHz on a Bruker Advance spectrometer. ¹H and ¹³C NMR chemical shifts (δ) are reported in ppm from tetramethylsilane using the residual solvent resonance (CHCl₃: $\delta_{\rm H}$ 7.26 and CDCl₃: $\delta_{\rm C}$ 77.2; or DMSO: $\delta_{\rm H}$ 2.50 and DMSO-*d*₆: $\delta_{\rm C}$ 39.5). Coupling constants (*J*) are given in Hz.

Codeine (1) and morphine (2) were used as obtained from suppliers (Codeine base and Morphine CPS from *Alcaliber S.A.*) without further purification. $[Rh(COD)(CH_3CN)_2]BF_4$ (5) and 1,3,5-triaza-7-phosphaadamantane (L1, PTA, 97%) were purchased from *Sigma-Aldrich* and used without further purification. Deionized H₂O was degassed by bubbling N₂ for 30 min before it was used.

UPLC chromatograms were recorder on a Waters UPLC equipment with a gradient pump and a MS detector (TQD), column Waters Acquity BEH C18 (1.7 μ m, 2.1 x 50 mm) using a solution 10 mM of ammonium formate in H₂O as mobile phase A and MeOH as mobile phase B (flow rate of 0.4 mL/ min and at 30 °C). The rate of the mobile phases was changed from 90% A : 10% B (0 min) to 10% A : 90% B (10 min).

Synthesis and characterization of hydrocodone (3):

Preparation of the catalyst: 1,3,5-Triaza-7-phosphaadamantane (L1) (5.4 mg, 0.033 mmol) and $[RhCOD(CH_3CN)_2]BF_4$ (5) (6.4 mg, 0.017 mmol) were stirred in deionized and degassed H₂O (10 mL) for some minutes prior to use until a clear solution was obtained.

Codeine base (1) (1.0 g, 3.34 mmol) was suspended in deionized and degassed H₂O (5 mL) and the suspension was heated to 100 °C. The catalyst solution (1.7 mM, 2 mL, 0.1 mol% Rh) was added and the reaction mixture was stirred vigorously at this temperature for 24 h. After cooling, the solid was filtered off and washed with H₂O (3 x 5 mL). The product **3** was dried under vacuum (< 2 mmHg) and obtained as an off-white solid (889 mg, 89%).

¹H NMR (400 MHz, CDCl₃, TMS): $\delta = 6.70$ (d, J(H,H) = 8.2 Hz, 1H), 6.63 (d, J(H,H) = 8.2 Hz, 1H), 4.65 (s, 1H), 3.91 (s, 3H), 3.18 (dd, J(H,H) = 5.4, 2.8 Hz, 1H), 3.02 (d, J(H,H) = 18.5 Hz, 1H), 2.62 – 2.51 (m, 2H), 2.43 (s, 3H), 2.42 – 2.26 (m, 3H), 2.19 (td, J(H,H) = 12.1, 3.5 Hz, 1H), 2.06 (td, J(H,H) = 12.1, 4.8 Hz, 1H), 1.89 – 1.77 (m, 2H), 1.26 (qd, J(H,H) = 13.2, 3.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, TMS): δ = 208.0, 145.6, 143.0, 127.4, 126.5, 119.9, 114.8, 91.6, 59.4, 57.0, 47.1, 47.0, 43.1, 42.9, 40.4, 35.7, 25.7, 20.1.

Synthesis and characterization of hydromorphone (4):

Preparation of the catalyst: 1,3,5-Triaza-7-phosphaadamantane (L1) (7.9 mg, 0.049 mmol) and $[RhCOD(CH_3CN)_2]BF_4$ (5) (9.3 mg, 0.025 mmol) were stirred in deionized and degassed H₂O (7 mL) for some minutes prior to use until a clear solution was obtained.

The catalyst solution (2.5 mM, 7 mL, 0.7 mol% Rh) was added to morphine CPS (2) (1.0 g, 3.50 mmol) and the suspension was heated to 100 °C and stirred vigorously at this temperature for 24 h. After cooling to room temperature, the solid was filtered off and washed with H₂O (3x5 mL). The product **4** was dried under vacuum (< 2 mmHg) and was obtained as white-grey solid (718 mg, 77%).

¹H NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 9.10$ (s, 1H), 6.54 (d, J(H,H) = 8.0 Hz, 1H), 6.50 (d, J(H,H) = 8.1 Hz, 1H), 4.80 (s, 1H), 3.06 (dd, J(H,H) = 5.0, 2.7 Hz, 1H), 2.87 (d, J(H,H) = 18.3 Hz, 1H), 2.56 - 2.39 (m, 3H), 2.29 (s, 3H), 2.23 - 2.12 (m, 2H), 2.05 - 1.96 (m, 2H), 1.80 - 1.74 (m, 1H), 1.52 - 1.44 (m, 1H), 1.05 - 0.95 (m, 1H).

¹³C NMR (100 MHz, DMSO-*d*₆, TMS): δ = 208.7, 144.0, 139.3, 127.4, 124.5, 119.2, 117.0, 90.4, 58.3, 46.4, 46.2, 42.5, 41.4, 39.7, 34.8, 25.0, 19.6.

Synthesis hydrocodone (3) in 100 g scale:

Preparation of the catalyst: 1,3,5-Triaza-7-phosphaadamantane (L1) (108 mg, 0.66 mmol) and $[RhCOD(CH_3CN)_2]BF_4$ (5) (128 mg, 0.34 mmol) were dissolved in deionized and degassed H₂O (20 mL) for some minutes prior to use until a clear solution was obtained.

Codeine (1) (100 g, 334 mmol) was suspended in deionized and degassed H_2O (500 mL) in a 1 L jacketed cylindrical reactor, and the suspension was heated at 100 °C. The catalyst solution (20 mL, 0.1 mol% Rh) was added and the reaction was stirred vigorously at this temperature for 24 h. After cooling, the solid was filtered off and washed with H_2O (3 x 100 mL). The solid was dried under vacuum (< 2 mmHg) to afford the title compound as off-white solid (90 g, 90%).

Hydrocodone (3) ¹H NMR (400 MHz, CDCl₃)

Hydrocodone (3) ¹³C NMR (400 MHz, CDCl₃)

Hydromorphone (4)

¹H NMR (400 MHz, DMSO- d_6)

Hydromorphone (4)

¹³C NMR (400 MHz, DMSO-*d*₆)

Hydrocodone (3) (100 g scale) ¹H NMR (400 MHz, DMSO-*d*₆)

UPLC chromatogram of hydrocodone (3) (100 g scale, 0.1 mol% Rh)

UPLC chromatogram of hydrocodone (3) (100 g scale, 0.15 mol% Rh)

