SUPPORTING INFORMATION

Symmetrical Bis(fulvene) Chromophores: Model Compounds for Acceptor-Donor-Acceptor Dye Architectures

Endrit Shurdha,[†] Brianne K. Repasy,[‡] Hannah A. Miller,[†] Kelsey Dees,[†] David W. Ball,[‡] Scott T. Iacono[†] and Gary J. Balaich*[†]

[†]Department of Chemistry and Chemistry Research Center, 2355 Fairchild Drive Suite 2N225, United States Air Force Academy, Colorado Springs, CO 80840

[‡]Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland OH 44115

Correspondence e-mail: scott.iacono@usafa.edu or gary.balaich@usafa.edu

Table of Contents

Description	Page Number
Synthesis of bis(fulvenes) 1-4 (experimental)	3-4
NMR spectra	5-12
Figure S1 - 400 MHz ¹ H NMR spectrum of bis(fulvene) 1	5
Figure S2 - 100 MHz ¹³ C NMR spectrum of bis(fulvene) 1	6
Figure S3 - 400 MHz ¹ H NMR spectrum of bis(fulvene) 2	7
Figure S4 - 100 MHz ¹³ C NMR spectrum of bis(fulvene) 2	8
Figure S5 - 400 MHz ¹ H NMR spectrum of bis(fulvene) 3	9
Figure S6 - 100 MHz ¹³ C NMR spectrum of bis(fulvene) 3	10
Figure S7 - 400 MHz ¹ H NMR spectrum of bis(fulvene) 4	11
Figure S8 - 100 MHz ¹³ C NMR spectrum of bis(fulvene) 4	12
X-ray crystallographic data for bis(fulvene) 3	13-40
Figure S9 – thermal ellipsoid view of bis(fulvene) 3 with all atoms labeled	13
Table S1 – sample and crystal data for bis(fulvene) 3	14
Figure S10 – thermal ellipsoid view of bis(fulvene) 3 with selected bond distances and angles	15
Figure S11 – packing view of bis(fulvene) 3 , view along the a-axis direction	16
Figure S12 – packing view of bis(fulvene) 3 , view perpendicular to the a-axis direction	17
Crystallographic tables (Tables S2 – S7)	18-40
Computational Methods and Results	41-49
Table S8 – Comparison of calculated and experimental data (UV-Vis) for bis(fulvenes) 1-4	41
Figures S13 – S16, calculated UV-Vis data for bis(fulvenes) 1-4	42-45
Figures S17 – S20, HOMO-LUMO plots of bis(fulvenes) 1-4	46-49
References	50

Experimental

General. All solvents, starting materials and reagents were purchased from either Aldrich Chemical Co. or TCI America as reagent grade or higher quality and used as received. Literature procedures were used to prepare 9,9-dioctylfluorene-2,7-dicarboxaldehyde,¹ 2,5-bis(hexyloxy)terephthaldehyde,² 2,2'-bithiophene-5,5'-dicarbaldehyde,³ and 1,3-diphenylcyclopentadiene.⁴ Premium grade silica gel used for column chromatography was purchased from Sorbent Technologies (60 Å, 40-63 µm (230X400 Mesh)). All ¹H and ¹³C NMR spectra were obtained under ambient conditions using an Agilent Technologies 400 MHz instrument. Proton and ¹³C NMR spectra were referenced using the peak for TMS (0.03%, $\delta = 0$, ¹H) or the peak for CDCl₃ ($\delta = 77.0$, ¹³C). High resolution MS data was obtained using an Agilent Technologies LCMS-TOF with reserpine as an internal standard. UV-Vis spectra were obtained under ambient conditions using quartz cells and a Cary-50 UV-Vis spectrophotometer. Single crystal X-ray diffraction data for bis(fulvene) **3** was obtained at 100 K using a Bruker SMART APEX CCD diffractometer. For details of the single crystal X-ray diffraction study, see pages 13-40 below.

Bis(fulvene) 1. A mixture of 1,3-diphenylcyclopentadiene (1.00 g, 4.58 mmol) and terephthaldehyde (0.31 g, 2.27 mmol) were combined in MeOH (20 mL). Pyrrolidine (0.57 mL, 6.94 mmol) was added and the resulting slurry stirred at room temperature for 16 hours. A brown precipitate was recovered by vacuum filtration, washed with 10 mL of cold MeOH, and vacuum dried to give **1** as a crude brown solid. Purification was achieved with flash column chromatography using hexanes (to remove a small amount of unreacted diphenylcyclopentadiene), followed by elution with 20% ethyl acetate/hexanes to give **1** as a brown solid (0.99 g, 81%). The brown solid was crystallized from 50/50 C₆H₆/MeOH to give **1** as a crystalline brown solid (0.43 g, 35%). Mp: 200-201° C. ¹H NMR (400 MHz, CDCl₃): δ 7.19-7.69 (overlapping m, 26 H, Ph*H* and exocyclic fulvene-C*H*); 7.03, 6.96 (broad m, 4 H, fulvene-C*H*). Selected ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 145.0, 141.7, 137.8, 137.3, 135.8, 135.1, 131.0, 129.4, 128.7, 128.5, 128.3, 128.1, 127.1, 126.2, 114.2 (*C* and *C*H). LC-TOF MS (APCI) m/z: [M+H]⁺ calcd for C₄₂H₃₀, 535.2420; found, 535.2418.

Bis(fulvene) 2. Crude **2** was obtained as an orange solid (0.86 g, 89%) using a similar procedure to that used for the synthesis of **1**, except using 1,3diphenylcyclopentadiene (0.50 g, 2.29 mmol), 9,9-dioctyl-9H-fluorene-3,6-dicarbaldehyde (0.51 g, 1.14 mmol) and pyrrolidine (0.30 mL, 3.65 mmol) and sonicating the reaction mixture at room temperature for 16 hours. Flash column chromatography (same method as for **1**) gave **2** as an orange solid (0.54 g, 56%). Crystalline **2** was also obtained from 50/50 $C_6H_6/MeOH$ (0.15 g, 15%). Mp: 138-139 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.82 (overlapping m, 28 H, Ph*H* and exocyclic fulvene-C*H*); 7.09, 7.03 (broad m, 4 H, fulvene-C*H*); 2.06 (m, 4 H, octyl-CC*H*₂); 1.18, 1.10 (overlapping m, 20 H, octyl-C*H*₂); 0.78, 0.74 (t, overlapping with m, 10 H, octyl-*Me* and octyl-C*H*₂). ¹³C NMR (100 MHz, CDCl₃) δ 151.9, 146.7, 144.0, 141.7, 141.6, 139.2, 136.6, 136.1, 135.3, 130.0, 129.5, 128.7, 128.4, 128.3, 127.9, 127.7, 127.0, 126.1, 125.4, 120.4, 114.6 (*Ph*, *C*CH₂, and fulvene –*C* and –*C*H); 55.3, 40.4, 31.7, 30.2, 29.3, 24.0, 22.6, 14.0 (octyl –*Me* and *C*H₂). LC-TOF MS (APCI) m/z: [M+H]⁺ calcd for C₆₅H₆₆, 847.5237; found, 847.5236.

Bis(fulvene) 3. Crude **3** was obtained as a black solid (1.56 g, 71%) using a similar procedure to that used for the synthesis of **1**, except using 1,3-diphenylcyclopentadiene (1.30 g, 5.96 mmol), 2,5-bis(hexyloxy)terephthalaldehyde (0.99 g, 2.96 mmol) and pyrrolidine (0.74 ml, 9.01 mmol). Attempts to obtain **3** as a crystalline material using a variety of solvents resulted in a significant loss of yield. However, crystallization of **3** from

50/50 C₆H₆/MeOH gave crystals suitable for single crystal X-ray analysis. Flash column chromatography (same method as for 1 and 2) on remaining crude **3** (0.96 g) gave a black solid (0.54 g, 25 %). Mp: 160-161° C. ¹H NMR (400 MHz, CDCl₃): δ 6.95-7.63 (overlapping m, 28 H, Ph<u>H</u> and fulvene- C<u>H</u>); 3.96 (t, 4 H, OC<u>H₂</u>, *J* = 6 Hz); 1.71 (m, 4 H, OCH₂C<u>H₂</u>); 1.35, 1.21 (m, 12 H, C<u>H₂</u>); 0.79 (t, 6 H, <u>Me</u>, *J* = 7 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 152.4, 146.7, 144.1, 141.7, 136.0, 135.3, 134.0, 129.3, 128.7, 128.5, 128.3, 128.0, 127.9, 127.0, 126.1, 115.5, 114.3 (<u>Ph</u> and fulvene -<u>C</u> and -<u>C</u>H); 69.3 (O<u>C</u>H₂); 31.6, 29.3, 25.8, 22.6, 14.1 (<u>C</u>H₂ and <u>Me</u>). LC-TOF MS (APCI) m/z: [M+H]⁺ calcd for C₅₄H₅₄O₂, 735.4197; found, 735.4200.

Bis(fulvene) 4. Bis(fulvene) **4** was obtained as a dark purple solid (0.50 g, 75%) using a similar procedure to that used for the synthesis of **3**, except using 1,3-diphenylcyclopentadiene (0.47 g, 2.15 mmol), 2,2'-bithiophene-5,5'-dicarbaldehyde (0.24 g, 1.52 mmol) and pyrrolidine (0.30 ml, 3.65 mmol). Analysis (¹H NMR) indicated >95% purity, and further purification by column chromatography was not carried out. Mp: 215-216 °C. ¹H NMR (400 MHz, CDCl₃): δ 6.93–7.79 (m, 30 H, Ph*<u>H</u>*, fulvene-*<u>H</u>, and bithiophene-<i><u>H</u>*). ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 142.1, 141.9, 141.7, 141.6, 140.8, 135.9, 135.2, 135.1, 129.5, 129.3, 128.5, 128.1, 127.6, 127.1, 126.3, 125.3, 113.1. LC-TOF MS (APCI) m/z: [M+H]⁺ calcd for C₄₄H₃₀S₂, 623.1862; found, 847.1857.

Figure S1. 400 MHz ¹H NMR spectrum of bis(fulvene) 1 in CDCl₃.

Figure S3. 400 MHz ¹H NMR spectrum of bis(fulvene) 2 in CDCl₃.

 δ 151.9, 146.7, 144.0, 141.7, 141.6, 139.2, 136.6, 136.1, 135.3, 130.0, 129.5, 128.7, 128.4, 128.3, 127.9, 127.7, 127.0, 126.1, 125.4, 120.4, 114.6 (*Ph*, <u>C</u>CH₂, and fulvene –<u>C</u> and –<u>C</u>H); 55.3, 40.4, 31.7, 30.2, 29.3, 24.0, 22.6, 14.0 (octyl –<u>Me</u> and <u>C</u>H₂) $Ph\underline{C}$, $Ph\underline{C}H$, $\underline{C}CH_2$, fulvene- \underline{C} and - $\underline{C}H$ octyl chains -Me and -CH,

Figure S4. 100 MHz ¹³C NMR spectrum of bis(fulvene) 2 in CDCl₃.

Figure S5. 400 MHz ¹H NMR spectrum of bis(fulvene) 3 in CDCl₃.

Figure S7. 400 MHz ¹H NMR spectrum of bis(fulvene) 4 in CDCl₃.

Figure S8. 100 MHz ¹³C NMR spectrum of bis(fulvene) 4 in CDCl₃.

X-Ray Crystallographic Data for Bis(fulvene) 2

Crystals of bis(fulvene) **3** suitable for single crystal X-ray diffraction were obtained from 50/50 C_6H_6 /MeOH. A red rectangular prismatic crystal of **3** measuring 0.44 × 0.13 × 0.11 mm³ was mounted on a MiTeGen MicroGrabber mount using Paratone-N oil. Data was collected at 100 K using a Bruker SMART APEX CCD diffractometer. Data sets were processed using the APEX2 software suite (Bruker, version 2013.6-2).⁵ Space group determinations were based on systematic absences and intensity statistics (XPREP, Bruker AXS Inc.),⁵ and all data sets were corrected for absorption using SADABS (Bruker, version 2012/1).⁵ All structures were solved using direct methods and difference map techniques, and were refined by full-matrix least squares procedures on F² (SHELXS and SHELXL, Sheldrick 2013).⁶ All non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms were treated as idealized contributions and refined using a riding model. Thermal ellipsoid views and packing diagrams were prepared using Mercury.⁷ Crystallographic data for **3** was deposited in the Cambridge Crystallographic Data Center (CCDC) with publication number 1007436. Copies of the crystallography data can be obtained, free of charge, from the CCDC website (www.ccdc.cam.ac.uk).

Figure S9. Thermal ellipsoid view of bis(fulvene) 3 (50% probability ellipsoids). Torsion angles O1C7C8C9 (57.7(2)°) and O2C13C14C15 (58.5(2)°) indicate a gauche conformation for both of the O-hexyl zigzag chains with respect to the direction of the respective O1-C7 or O2-C13 bonds. The angle between the mean plane of the zigzag chain (C13-C18) and the mean plane of the central Ph ring (C1-C6) is much larger (74.23°) compared to the same angle for the mean plane of the zigzag chain defined by C7-C12 (30.29°).

Table S1. Sample and crystal data for bis(fulvene) 3.

Chemical formula	$C_{54}H_{54}O_2$		
Formula weight	734.97		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal size	0.110 x 0.130 x 0.440 n	nm	
Crystal system	triclinic		
Space group	P-1		
Unit cell dimensions	a = 10.0302(19) Å	$\alpha = 79.160(2)^{\circ}$	
	b = 14.195(3) Å	$\beta = 75.233(2)^{\circ}$	
	c = 15.533(3) Å	$\gamma = 77.829(2)^{\circ}$	
Volume	2069.2(7) Å ³		
Ζ	2		
Density (calculated)	1.180		
Absorption coefficient	0.070 mm ⁻¹		
F(000)	788		
Theta range for data collection	1.87 to 28.05°		
Index ranges	-13<=h<=13, -18<=k<=	=18, -20<=l<=20	
Reflections collected	43327		
Independent reflections	9982 [R(int) = 0.0569]		
Coverage of independent reflections	99.4%		
Absorption correction	multi-scan		
Max. and min. transmission	0.9920 and 0.9700		
Refinement method	Full-matrix least-square	es on F ²	
Data / restraints / parameters	9982 / 0 / 505		
Goodness-of-fit on F ²	1.022		
Final R indices	6836 data; I>2σ(I)		R1 = 0.0505, wR2 = 0.1198
	all data		R1 = 0.0825, wR2 = 0.1389
Largest diff. peak and hole	0.324 and -0.262 eÅ ⁻³		

Selected Bond Distances (Å)

 $\begin{array}{l} \text{C1-O1} = 1.376(2) \\ \text{O1-C7} = 1.434(2) \\ \text{C1-C2} = 1.411(2) \\ \text{C3-C4} = 1.383(2) \end{array}$

Selected Bond Angles (°)

C19-C20-C21 = 109.76(13)C22-C21-C20 = 107.88(12)C21-C22-C23 = 109.51(13)C22-C23-C19 = 105.52(12)

Figure S10. Thermal ellipsoid view of bis(fulvene) 3 depicting selected bond distances and angles. Substituent angles represent the angles between the least squares planes of the Ph and fulvene rings as well as between the least squares planes defined by 6 carbon atoms of each alkyl chain. Shortest intermolecular contacts are noted between H3-H22 (1.98 Å) and H6-H7B (1.97 Å). Thermal ellipsoids are shown at the 50% probability level.

Figure S11. Packing view of bis(fulvene) 3, view along the a-axis direction. Molecules are aligned in the same relative orientation along the b-axis direction and align in a head-to-tail fashion with respect to the fulvene rings, A and B, along the c-axis direction. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms were omitted for clarity.

Figure S12. Packing view of bis(fulvene) 3, view perpendicular to the a-axis direction showing large angle (89.4°) between the least squares planes of the $1-Ph_A$ and $1-Ph_B$ rings along the a-axis direction. The least squares plane of the central-Ph group is tipped 24.3° with respect to the 100 plane. Thermal ellipsoids are shown at the 50% probability level. The alkyl chains and hydrogen atoms were omitted for clarity.

Table S2. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for bis(fulvene) 3.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
01	0.71901(12)	0.67710(7)	0.39624(7)	0.0253(3)
O2	0.74540(12)	0.32987(7)	0.62493(7)	0.0254(3)
C1	0.73810(15)	0.58840(10)	0.44952(10)	0.0179(3)
C2	0.68870(14)	0.51206(10)	0.42740(9)	0.0161(3)
C3	0.69228(15)	0.42454(10)	0.48720(10)	0.0182(3)
C4	0.74226(15)	0.41324(10)	0.56433(10)	0.0177(3)
C5	0.79735(14)	0.48825(10)	0.58402(9)	0.0160(3)
C6	0.79251(15)	0.57557(10)	0.52486(10)	0.0187(3)
C7	0.81024(16)	0.74417(11)	0.39157(10)	0.0222(3)
C8	0.74952(18)	0.84136(11)	0.34578(11)	0.0257(4)
C9	0.72845(16)	0.84220(11)	0.25234(10)	0.0228(3)
C10	0.67034(16)	0.94381(11)	0.21086(10)	0.0230(3)
C11	0.63921(18)	0.94748(11)	0.11973(11)	0.0273(4)
C12	0.59507(19)	0.05109(12)	0.07648(12)	0.0342(4)
C13	0.66028(16)	0.26109(11)	0.62271(10)	0.0226(3)
C14	0.65688(16)	0.19068(11)	0.70861(11)	0.0236(3)

Table S2. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for bis(fulvene) 3.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C15	0.80108(16)	0.13771(11)	0.72082(10)	0.0228(3)
C16	0.79760(16)	0.06687(11)	0.80738(10)	0.0230(3)
C17	0.94174(17)	0.01133(12)	0.81566(11)	0.0304(4)
C18	0.94326(19)	0.94424(13)	0.90433(12)	0.0364(4)
C19	0.54977(15)	0.49649(10)	0.21818(9)	0.0168(3)
C20	0.48054(15)	0.42792(10)	0.20857(10)	0.0182(3)
C21	0.46396(14)	0.35659(10)	0.29024(10)	0.0178(3)
C22	0.52387(15)	0.38302(10)	0.34912(10)	0.0184(3)
C23	0.58109(14)	0.47119(10)	0.30904(9)	0.0164(3)
C24	0.64395(14)	0.52717(10)	0.34327(10)	0.0172(3)
C25	0.58875(15)	0.57872(10)	0.14898(10)	0.0179(3)
C26	0.71955(15)	0.60732(10)	0.13113(10)	0.0191(3)
C27	0.75474(16)	0.68252(11)	0.06303(10)	0.0222(3)
C28	0.66046(17)	0.73020(11)	0.01099(11)	0.0257(4)
C29	0.53083(17)	0.70234(11)	0.02732(11)	0.0275(4)
C30	0.49522(16)	0.62777(11)	0.09571(10)	0.0228(3)
C31	0.39527(15)	0.27147(11)	0.30450(10)	0.0193(3)

Table S2. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for bis(fulvene) 3.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized $U_{\mbox{ij}}$ tensor.

C32	0.32754(16)	0.25605(11)	0.24115(11)	0.0227(3)
C33	0.26306(17)	0.17540(12)	0.25521(11)	0.0275(4)
C34	0.26460(18)	0.10834(12)	0.33176(11)	0.0299(4)
C35	0.33109(19)	0.12228(12)	0.39526(12)	0.0317(4)
C36	0.39495(17)	0.20292(12)	0.38180(11)	0.0262(4)
C37	0.93778(15)	0.51734(10)	0.78712(10)	0.0174(3)
C38	0.99979(15)	0.59181(10)	0.79214(10)	0.0194(3)
C39	0.03031(15)	0.65068(11)	0.70343(10)	0.0186(3)
C40	0.98447(15)	0.61148(11)	0.64517(10)	0.0195(3)
C41	0.91920(15)	0.52856(10)	0.69365(10)	0.0176(3)
C42	0.84200(14)	0.47557(10)	0.66782(9)	0.0169(3)
C43	0.89516(15)	0.44051(10)	0.86064(10)	0.0174(3)
C44	0.92350(15)	0.34251(11)	0.84822(10)	0.0198(3)
C45	0.88771(16)	0.27032(11)	0.91894(11)	0.0234(3)
C46	0.82209(16)	0.29390(11)	0.00386(11)	0.0235(3)
C47	0.79331(16)	0.39070(11)	0.01757(10)	0.0234(3)
C48	0.82897(15)	0.46317(11)	0.94679(10)	0.0206(3)

Table S2. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for bis(fulvene) 3.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C49	0.10081(15)	0.73546(11)	0.68196(10)	0.0203(3)
C50	0.17763(16)	0.75261(11)	0.73923(11)	0.0249(3)
C51	0.24931(17)	0.83047(12)	0.71773(12)	0.0297(4)
C52	0.24489(18)	0.89348(12)	0.63866(12)	0.0316(4)
C53	0.16703(19)	0.87890(12)	0.58181(12)	0.0337(4)
C54	0.09596(17)	0.80066(12)	0.60321(11)	0.0281(4)

01-C1	1.3762(17)	O1-C7	1.4341(17)
O2-C4	1.3667(17)	O2-C13	1.4362(17)
C1-C6	1.380(2)	C1-C2	1.4111(19)
C2-C3	1.4041(19)	C2-C24	1.452(2)
C3-C4	1.383(2)	С3-Н3	0.95
C4-C5	1.410(2)	C5-C6	1.397(2)
C5-C42	1.4501(19)	С6-Н6	0.95
C7-C8	1.509(2)	С7-Н7А	0.99
С7-Н7В	0.99	C8-C9	1.517(2)
C8-H8A	0.99	C8-H8B	0.99
C9-C10	1.524(2)	С9-Н9А	0.99
С9-Н9В	0.99	C10-C11	1.515(2)
C10-H10A	0.99	C10-H10B	0.99

C11-C12	1.522(2)	C11-H11A	0.99
C11-H11B	0.99	C12-H12A	0.98
C12-H12B	0.98	C12-H12C	0.98
C13-C14	1.507(2)	С13-Н13А	0.99
С13-Н13В	0.99	C14-C15	1.523(2)
C14-H14A	0.99	C14-H14B	0.99
C15-C16	1.517(2)	C15-H15A	0.99
C15-H15B	0.99	C16-C17	1.518(2)
С16-Н16А	0.99	С16-Н16В	0.99
C17-C18	1.522(2)	С17-Н17А	0.99
С17-Н17В	0.99	C18-H18A	0.98
C18-H18B	0.98	C18-H18C	0.98
C19-C20	1.358(2)	C19-C25	1.475(2)
C19-C23	1.486(2)	C20-C21	1.464(2)
С20-Н20	0.95	C21-C22	1.357(2)
C21-C31	1.468(2)	C22-C23	1.4528(19)
С22-Н22	0.95	C23-C24	1.3613(19)
C24-H24	0.95	C25-C30	1.397(2)
C25-C26	1.400(2)	C26-C27	1.388(2)
С26-Н26	0.95	C27-C28	1.386(2)

C27-H27	0.95	C28-C29	1.386(2)
C28-H28	0.95	C29-C30	1.386(2)
С29-Н29	0.95	С30-Н30	0.95
C31-C36	1.396(2)	C31-C32	1.401(2)
C32-C33	1.387(2)	С32-Н32	0.95
C33-C34	1.378(2)	С33-Н33	0.95
C34-C35	1.386(2)	C34-H34	0.95
C35-C36	1.384(2)	С35-Н35	0.95
С36-Н36	0.95	C37-C38	1.358(2)
C37-C43	1.468(2)	C37-C41	1.486(2)
C38-C39	1.466(2)	С38-Н38	0.95
C39-C40	1.360(2)	C39-C49	1.465(2)
C40-C41	1.456(2)	С40-Н40	0.95
C41-C42	1.358(2)	C42-H42	0.95
C43-C48	1.398(2)	C43-C44	1.400(2)
C44-C45	1.384(2)	C44-H44	0.95
C45-C46	1.384(2)	С45-Н45	0.95
C46-C47	1.388(2)	С46-Н46	0.95
C47-C48	1.387(2)	С47-Н47	0.95
C48-H48	0.95	C49-C54	1.393(2)

C49-C50	1.398(2)	C50-C51	1.387(2)
С50-Н50	0.95	C51-C52	1.381(2)
C51-H51	0.95	C52-C53	1.386(3)
С52-Н52	0.95	C53-C54	1.388(2)
С53-Н53	0.95	С54-Н54	0.95

C1-O1-C7	118.22(11)	C4-O2-C13	118.35(11)
O1-C1-C6	122.38(13)	O1-C1-C2	116.42(12)
C6-C1-C2	121.01(13)	C3-C2-C1	117.05(13)
C3-C2-C24	124.44(13)	C1-C2-C24	118.45(13)
C4-C3-C2	121.67(13)	С4-С3-Н3	119.2
С2-С3-Н3	119.2	O2-C4-C3	123.47(13)
O2-C4-C5	115.50(12)	C3-C4-C5	121.01(13)
C6-C5-C4	117.16(13)	C6-C5-C42	123.18(13)
C4-C5-C42	119.34(13)	C1-C6-C5	121.99(13)
С1-С6-Н6	119.0	С5-С6-Н6	119.0
01-C7-C8	107.50(12)	O1-C7-H7A	110.2

С8-С7-Н7А	110.2	O1-C7-H7B	110.2
С8-С7-Н7В	110.2	H7A-C7-H7B	108.5
C7-C8-C9	115.90(13)	С7-С8-Н8А	108.3
С9-С8-Н8А	108.3	С7-С8-Н8В	108.3
С9-С8-Н8В	108.3	H8A-C8-H8B	107.4
C8-C9-C10	111.98(13)	С8-С9-Н9А	109.2
С10-С9-Н9А	109.2	С8-С9-Н9В	109.2
С10-С9-Н9В	109.2	Н9А-С9-Н9В	107.9
C11-C10-C9	114.00(13)	С11-С10-Н10А	108.8
С9-С10-Н10А	108.8	С11-С10-Н10В	108.8
С9-С10-Н10В	108.8	H10A-C10-H10B	107.6
C10-C11-C12	112.42(14)	C10-C11-H11A	109.1
С12-С11-Н11А	109.1	C10-C11-H11B	109.1
C12-C11-H11B	109.1	H11A-C11-H11B	107.9
C11-C12-H12A	109.5	C11-C12-H12B	109.5
H12A-C12-H12B	109.5	C11-C12-H12C	109.5
H12A-C12-H12C	109.5	H12B-C12-H12C	109.5
O2-C13-C14	106.57(12)	O2-C13-H13A	110.4

C14-C13-H13A	110.4	O2-C13-H13B	110.4
С14-С13-Н13В	110.4	H13A-C13-H13B	108.6
C13-C14-C15	113.68(13)	C13-C14-H14A	108.8
C15-C14-H14A	108.8	C13-C14-H14B	108.8
C15-C14-H14B	108.8	H14A-C14-H14B	107.7
C16-C15-C14	113.65(12)	С16-С15-Н15А	108.8
C14-C15-H15A	108.8	С16-С15-Н15В	108.8
C14-C15-H15B	108.8	H15A-C15-H15B	107.7
C15-C16-C17	112.60(13)	С15-С16-Н16А	109.1
С17-С16-Н16А	109.1	С15-С16-Н16В	109.1
С17-С16-Н16В	109.1	H16A-C16-H16B	107.8
C16-C17-C18	113.96(14)	С16-С17-Н17А	108.8
C18-C17-H17A	108.8	С16-С17-Н17В	108.8
С18-С17-Н17В	108.8	H17A-C17-H17B	107.7
C17-C18-H18A	109.5	C17-C18-H18B	109.5
H18A-C18-H18B	109.5	С17-С18-Н18С	109.5
H18A-C18-H18C	109.5	H18B-C18-H18C	109.5
C20-C19-C25	125.34(13)	C20-C19-C23	107.33(12)

C25-C19-C23	127.31(13)	C19-C20-C21	109.76(13)
С19-С20-Н20	125.1	С21-С20-Н20	125.1
C22-C21-C20	107.88(12)	C22-C21-C31	126.70(14)
C20-C21-C31	125.42(13)	C21-C22-C23	109.51(13)
С21-С22-Н22	125.2	С23-С22-Н22	125.2
C24-C23-C22	131.01(13)	C24-C23-C19	123.37(13)
C22-C23-C19	105.52(12)	C23-C24-C2	131.08(14)
С23-С24-Н24	114.5	C2-C24-H24	114.5
C30-C25-C26	117.94(13)	C30-C25-C19	119.45(13)
C26-C25-C19	122.54(13)	C27-C26-C25	120.97(14)
С27-С26-Н26	119.5	С25-С26-Н26	119.5
C28-C27-C26	120.17(14)	С28-С27-Н27	119.9
С26-С27-Н27	119.9	C27-C28-C29	119.62(14)
С27-С28-Н28	120.2	С29-С28-Н28	120.2
C30-C29-C28	120.25(14)	С30-С29-Н29	119.9
С28-С29-Н29	119.9	C29-C30-C25	121.05(14)
С29-С30-Н30	119.5	С25-С30-Н30	119.5
C36-C31-C32	117.52(14)	C36-C31-C21	121.19(14)

C32-C31-C21	121.29(14)	C33-C32-C31	120.85(15)
С33-С32-Н32	119.6	С31-С32-Н32	119.6
C34-C33-C32	120.70(15)	С34-С33-Н33	119.6
С32-С33-Н33	119.6	C33-C34-C35	119.33(15)
С33-С34-Н34	120.3	С35-С34-Н34	120.3
C36-C35-C34	120.21(16)	С36-С35-Н35	119.9
С34-С35-Н35	119.9	C35-C36-C31	121.38(15)
С35-С36-Н36	119.3	С31-С36-Н36	119.3
C38-C37-C43	126.45(13)	C38-C37-C41	107.36(13)
C43-C37-C41	126.18(13)	C37-C38-C39	109.67(13)
С37-С38-Н38	125.2	С39-С38-Н38	125.2
C40-C39-C49	126.54(14)	C40-C39-C38	108.03(13)
C49-C39-C38	125.42(13)	C39-C40-C41	109.15(13)
С39-С40-Н40	125.4	С41-С40-Н40	125.4
C42-C41-C40	130.59(13)	C42-C41-C37	123.37(13)
C40-C41-C37	105.66(12)	C41-C42-C5	129.35(14)
С41-С42-Н42	115.3	С5-С42-Н42	115.3
C48-C43-C44	117.80(13)	C48-C43-C37	120.47(13)

C44-C43-C37	121.69(13)	C45-C44-C43	121.15(14)
C45-C44-H44	119.4	C43-C44-H44	119.4
C44-C45-C46	120.38(14)	C44-C45-H45	119.8
С46-С45-Н45	119.8	C45-C46-C47	119.33(14)
С45-С46-Н46	120.3	С47-С46-Н46	120.3
C48-C47-C46	120.39(15)	С48-С47-Н47	119.8
С46-С47-Н47	119.8	C47-C48-C43	120.95(14)
C47-C48-H48	119.5	С43-С48-Н48	119.5
C54-C49-C50	117.69(14)	C54-C49-C39	121.34(14)
C50-C49-C39	120.96(14)	C51-C50-C49	121.37(16)
С51-С50-Н50	119.3	С49-С50-Н50	119.3
C52-C51-C50	120.05(16)	С52-С51-Н51	120.0
С50-С51-Н51	120.0	C51-C52-C53	119.48(15)
С51-С52-Н52	120.3	С53-С52-Н52	120.3
C52-C53-C54	120.38(17)	С52-С53-Н53	119.8
С54-С53-Н53	119.8	C53-C54-C49	121.01(16)
С53-С54-Н54	119.5	С49-С54-Н54	119.5

C7-O1-C1-C6	28.7(2)	C7-O1-C1-C2	-156.17(13)
01-C1-C2-C3	-172.67(13)	C6-C1-C2-C3	2.5(2)
O1-C1-C2-C24	10.1(2)	C6-C1-C2-C24	-174.72(13)
C1-C2-C3-C4	-0.2(2)	C24-C2-C3-C4	176.89(14)
C13-O2-C4-C3	-17.4(2)	C13-O2-C4-C5	164.13(13)
C2-C3-C4-O2	178.90(13)	C2-C3-C4-C5	-2.7(2)
O2-C4-C5-C6	-178.33(13)	C3-C4-C5-C6	3.2(2)
O2-C4-C5-C42	-4.7(2)	C3-C4-C5-C42	176.81(13)
01-C1-C6-C5	172.85(13)	C2-C1-C6-C5	-2.0(2)
C4-C5-C6-C1	-0.8(2)	C42-C5-C6-C1	-174.20(14)
C1-O1-C7-C8	-168.37(13)	01-C7-C8-C9	-57.69(18)
C7-C8-C9-C10	-178.54(13)	C8-C9-C10-C11	-176.52(13)
C9-C10-C11-C12	-174.38(14)	C4-O2-C13-C14	-166.56(12)
O2-C13-C14-C15	-58.48(17)	C13-C14-C15-C16	179.95(13)
C14-C15-C16-C17	177.07(14)	C15-C16-C17-C18	176.39(14)
C25-C19-C20-C21	178.42(13)	C23-C19-C20-C21	-0.07(16)
C19-C20-C21-C22	0.05(17)	C19-C20-C21-C31	-179.53(13)
C20-C21-C22-C23	0.00(16)	C31-C21-C22-C23	179.56(13)
C21-C22-C23-C24	176.32(15)	C21-C22-C23-C19	-0.04(16)
C20-C19-C23-C24	-176.65(13)	C25-C19-C23-C24	4.9(2)

C20-C19-C23-C22	0.06(15)	C25-C19-C23-C22	-178.39(13)
C22-C23-C24-C2	7.7(3)	C19-C23-C24-C2	-176.46(14)
C3-C2-C24-C23	9.7(2)	C1-C2-C24-C23	-173.25(15)
C20-C19-C25-C30	39.4(2)	C23-C19-C25-C30	-142.42(15)
C20-C19-C25-C26	-137.47(16)	C23-C19-C25-C26	40.7(2)
C30-C25-C26-C27	0.4(2)	C19-C25-C26-C27	177.35(14)
C25-C26-C27-C28	-0.5(2)	C26-C27-C28-C29	0.0(2)
C27-C28-C29-C30	0.5(2)	C28-C29-C30-C25	-0.5(2)
C26-C25-C30-C29	0.0(2)	C19-C25-C30-C29	-176.97(14)
C22-C21-C31-C36	-5.0(2)	C20-C21-C31-C36	174.50(14)
C22-C21-C31-C32	174.95(15)	C20-C21-C31-C32	-5.6(2)
C36-C31-C32-C33	-0.1(2)	C21-C31-C32-C33	179.96(14)
C31-C32-C33-C34	-0.2(2)	C32-C33-C34-C35	0.2(3)
C33-C34-C35-C36	0.1(3)	C34-C35-C36-C31	-0.5(3)
C32-C31-C36-C35	0.5(2)	C21-C31-C36-C35	-179.59(15)
C43-C37-C38-C39	177.92(13)	C41-C37-C38-C39	-2.80(16)
C37-C38-C39-C40	0.70(17)	C37-C38-C39-C49	-178.05(14)
C49-C39-C40-C41	-179.48(14)	C38-C39-C40-C41	1.78(16)
C39-C40-C41-C42	169.60(15)	C39-C40-C41-C37	-3.39(16)
C38-C37-C41-C42	-169.86(14)	C43-C37-C41-C42	9.4(2)

C38-C37-C41-C40	3.78(16)	C43-C37-C41-C40	-176.94(13)
C40-C41-C42-C5	-2.3(3)	C37-C41-C42-C5	169.63(14)
C6-C5-C42-C41	-19.7(2)	C4-C5-C42-C41	167.10(14)
C38-C37-C43-C48	42.7(2)	C41-C37-C43-C48	-136.45(15)
C38-C37-C43-C44	-134.91(16)	C41-C37-C43-C44	45.9(2)
C48-C43-C44-C45	-0.3(2)	C37-C43-C44-C45	177.41(13)
C43-C44-C45-C46	0.3(2)	C44-C45-C46-C47	-0.4(2)
C45-C46-C47-C48	0.5(2)	C46-C47-C48-C43	-0.4(2)
C44-C43-C48-C47	0.3(2)	C37-C43-C48-C47	-177.39(14)
C40-C39-C49-C54	17.2(2)	C38-C39-C49-C54	-164.31(14)
C40-C39-C49-C50	-161.62(15)	C38-C39-C49-C50	16.9(2)
C54-C49-C50-C51	-1.4(2)	C39-C49-C50-C51	177.40(14)
C49-C50-C51-C52	0.5(2)	C50-C51-C52-C53	0.8(2)
C51-C52-C53-C54	-1.1(3)	C52-C53-C54-C49	0.2(3)
			-177.73(15)
C50-C49-C54-C53	1.1(2)	C39-C49-C54-C53	

Table S6. Anisotropic atomic displacement parameters (Å²) for bis(fulvene) 3.

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

U_{11} U_{22} U_{33} U_{23} U_{13}	U ₁₂
--	-----------------

01	0.0387(7)	0.0140(5)	0.0300(6)	0.0060(5)	-0.0204(5)	-0.0118(5)			
02	0.0384(6)	0.0160(5)	0.0277(6)	0.0069(5)	-0.0179(5)	-0.0136(5)			
Table S	Table S6. Anisotropic atomic displacement parameters (Å ²) for bis(fulvene) 3.								
The anis	sotropic atomic displace	ment factor exponent ta	kes the form: $-2\pi^2$ [h ² a ²	*2 U ₁₁ + + 2 h k a [*] b [*]	* U ₁₂]				
C1	0.0221(7)	0.0121(7)	0.0201(7)	0.0000(6)	-0.0072(6)	-0.0032(6)			
C2	0.0173(7)	0.0137(7)	0.0173(7)	-0.0028(6)	-0.0037(6)	-0.0020(5)			
C3	0.0221(7)	0.0134(7)	0.0210(7)	-0.0023(6)	-0.0075(6)	-0.0044(6)			
C4	0.0212(7)	0.0125(7)	0.0188(7)	0.0011(6)	-0.0060(6)	-0.0026(6)			
C5	0.0170(7)	0.0152(7)	0.0163(7)	-0.0027(6)	-0.0048(5)	-0.0020(5)			
C6	0.0235(7)	0.0131(7)	0.0225(8)	-0.0023(6)	-0.0086(6)	-0.0057(6)			
C7	0.0306(8)	0.0162(8)	0.0236(8)	0.0000(6)	-0.0106(7)	-0.0094(6)			
C8	0.0363(9)	0.0141(8)	0.0291(9)	0.0004(6)	-0.0114(7)	-0.0079(6)			
C9	0.0271(8)	0.0160(8)	0.0251(8)	-0.0004(6)	-0.0068(6)	-0.0048(6)			
C10	0.0270(8)	0.0137(7)	0.0287(8)	0.0013(6)	-0.0094(7)	-0.0042(6)			
C11	0.0320(9)	0.0189(8)	0.0299(9)	0.0000(7)	-0.0068(7)	-0.0055(7)			
C12	0.0435(10)	0.0238(9)	0.0344(10)	0.0040(7)	-0.0147(8)	-0.0039(8)			
C13	0.0272(8)	0.0174(8)	0.0266(8)	0.0003(6)	-0.0105(7)	-0.0087(6)			
C14	0.0263(8)	0.0172(8)	0.0272(8)	0.0023(6)	-0.0064(7)	-0.0077(6)			
C15	0.0249(8)	0.0160(8)	0.0263(8)	0.0008(6)	-0.0048(6)	-0.0050(6)			

(10 0.0200(8) 0.0105(8) 0.0250(8) -0.0007(0) -0.0040(0)	0.0200(8)	0.0103(8)	0.0230(8)	-0.0007(0)	-0.0040(0)	-0.0034(0)
---	-----------	-----------	-----------	------------	------------	------------

Table S6. Anisotropic atomic displacement parameters (Å²) for bis(fulvene) 3.

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

C17	0.0290(9)	0.0245(9)	0.0326(9)	0.0020(7)	-0.0057(7)	-0.0002(7)
C18	0.0376(10)	0.0313(10)	0.0363(10)	0.0054(8)	-0.0131(8)	-0.0005(8)
C19	0.0188(7)	0.0145(7)	0.0172(7)	-0.0030(6)	-0.0048(6)	-0.0012(5)
C20	0.0200(7)	0.0183(7)	0.0182(7)	-0.0042(6)	-0.0060(6)	-0.0037(6)
C21	0.0174(7)	0.0161(7)	0.0198(7)	-0.0020(6)	-0.0042(6)	-0.0030(6)
C22	0.0204(7)	0.0168(7)	0.0183(7)	-0.0005(6)	-0.0054(6)	-0.0042(6)
C23	0.0173(7)	0.0146(7)	0.0176(7)	-0.0029(6)	-0.0050(6)	-0.0015(5)
C24	0.0183(7)	0.0134(7)	0.0194(7)	-0.0014(6)	-0.0056(6)	-0.0010(5)
C25	0.0225(7)	0.0142(7)	0.0185(7)	-0.0039(6)	-0.0058(6)	-0.0032(6)
C26	0.0234(8)	0.0156(7)	0.0198(7)	-0.0037(6)	-0.0084(6)	-0.0015(6)
C27	0.0270(8)	0.0187(8)	0.0236(8)	-0.0037(6)	-0.0068(6)	-0.0076(6)
C28	0.0358(9)	0.0173(8)	0.0259(8)	0.0029(7)	-0.0109(7)	-0.0090(7)
C29	0.0323(9)	0.0212(8)	0.0315(9)	0.0045(7)	-0.0172(7)	-0.0053(7)
C30	0.0235(8)	0.0187(8)	0.0284(8)	-0.0010(6)	-0.0105(6)	-0.0049(6)
C31	0.0176(7)	0.0177(7)	0.0225(8)	-0.0059(6)	-0.0024(6)	-0.0029(6)
C32	0.0244(8)	0.0191(8)	0.0261(8)	-0.0045(6)	-0.0068(6)	-0.0045(6)

Table S6. Anisotropic atomic displacement parameters (Å²) for bis(fulvene) 3.

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

C33	0.0296(9)	0.0247(9)	0.0331(9)	-0.0106(7)	-0.0077(7)	-0.0088(7)
C34	0.0349(9)	0.0225(9)	0.0346(10)	-0.0083(7)	-0.0019(7)	-0.0132(7)
C35	0.0429(10)	0.0241(9)	0.0282(9)	0.0008(7)	-0.0041(8)	-0.0150(8)
C36	0.0330(9)	0.0232(8)	0.0251(8)	-0.0016(7)	-0.0077(7)	-0.0113(7)
C37	0.0192(7)	0.0148(7)	0.0186(7)	-0.0024(6)	-0.0064(6)	-0.0010(6)
C38	0.0224(7)	0.0164(7)	0.0211(8)	-0.0032(6)	-0.0083(6)	-0.0024(6)
C39	0.0183(7)	0.0166(7)	0.0206(7)	-0.0022(6)	-0.0044(6)	-0.0030(6)
C40	0.0196(7)	0.0199(8)	0.0190(7)	-0.0008(6)	-0.0056(6)	-0.0035(6)
C41	0.0181(7)	0.0153(7)	0.0189(7)	-0.0032(6)	-0.0044(6)	-0.0005(5)
C42	0.0195(7)	0.0135(7)	0.0169(7)	-0.0016(6)	-0.0047(6)	-0.0007(5)
C43	0.0187(7)	0.0156(7)	0.0195(7)	-0.0011(6)	-0.0089(6)	-0.0021(6)
C44	0.0241(8)	0.0164(7)	0.0203(7)	-0.0037(6)	-0.0091(6)	-0.0005(6)
C45	0.0283(8)	0.0141(7)	0.0301(9)	-0.0023(6)	-0.0136(7)	-0.0010(6)
C46	0.0256(8)	0.0193(8)	0.0263(8)	0.0036(7)	-0.0101(7)	-0.0063(6)
C47	0.0274(8)	0.0225(8)	0.0201(8)	-0.0023(6)	-0.0057(6)	-0.0038(6)
C48	0.0257(8)	0.0144(7)	0.0228(8)	-0.0031(6)	-0.0077(6)	-0.0024(6)

Table S6. Anisotropic atomic displacement parameters (Å²) for bis(fulvene) 3.

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

C49	0.0199(7)	0.0161(7)	0.0243(8)	-0.0049(6)	-0.0026(6)	-0.0030(6)
C50	0.0244(8)	0.0182(8)	0.0333(9)	-0.0059(7)	-0.0079(7)	-0.0027(6)
C51	0.0265(8)	0.0197(8)	0.0460(11)	-0.0125(8)	-0.0075(8)	-0.0042(6)
C52	0.0310(9)	0.0187(8)	0.0433(11)	-0.0102(8)	0.0035(8)	-0.0099(7)
C53	0.0441(11)	0.0210(9)	0.0321(10)	-0.0005(7)	0.0011(8)	-0.0122(8)
C54	0.0342(9)	0.0247(9)	0.0268(9)	-0.0033(7)	-0.0052(7)	-0.0104(7)

Table S7. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for bis(fulvene) 3.

	x/a	y/b	z/c	U(eq)
Н3	0.6595	0.3718	0.4744	0.022
Н6	0.8277	0.6277	0.5369	0.022
H7A	0.9053	0.7210	0.3568	0.027
H7B	0.8168	0.7501	0.4528	0.027
H8A	0.8120	0.8883	0.3417	0.031
H8B	0.6580	0.8650	0.3844	0.031
H9A	0.6631	0.7975	0.2557	0.027
H9B	0.8191	0.8180	0.2131	0.027
H10A	0.5832	0.9694	0.2525	0.028
H10B	0.7387	0.9872	0.2046	0.028

	x/a	y/b	z/c	U(eq)
H11A	0.5636	0.9098	0.1267	0.033
H11B	0.7237	0.9163	0.0795	0.033
H12A	0.5753	1.0498	0.0182	0.051
H12B	0.6707	1.0882	0.0677	0.051
H12C	0.5108	1.0821	0.1157	0.051
H13A	0.7010	0.2263	0.5699	0.027
H13B	0.5645	0.2948	0.6189	0.027
H14A	0.5989	0.1419	0.7094	0.028
H14B	0.6113	0.2267	0.7602	0.028
H15A	0.8466	0.1017	0.6693	0.027
H15B	0.8590	0.1865	0.7200	0.027
H16A	0.7360	0.0199	0.8098	0.028
H16B	0.7570	0.1032	0.8592	0.028
H17A	1.0047	0.0587	0.8090	0.037
H17B	0.9795	-0.0280	0.7657	0.037
Table S7. Hydrogen ato	mic coordinates and isotrop	ic atomic displacement param	eters (Ų) for bis(fulvene) 3.	
H18A	1.0392	-0.0889	0.9050	0.055
H18B	0.8834	-0.1042	0.9109	0.055
H18C	0.9081	-0.0174	0.9542	0.055

Table S7. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for bis(fulvene) 3.

	x/a	y/b	z/c	U(eq)
H20	0.4478	0.4265	0.1567	0.022
H22	0.5278	0.3491	0.4075	0.022
H24	0.6616	0.5863	0.3056	0.021
H26	0.7852	0.5748	0.1661	0.023
H27	0.8437	0.7013	0.0521	0.027
H28	0.6845	0.7817	-0.0356	0.031
H29	0.4662	0.7345	-0.0085	0.033
H30	0.4058	0.6097	0.1066	0.027
H32	0.3258	0.3014	0.1879	0.027
H33	0.2173	0.1663	0.2116	0.033
H34	0.2205	0.0531	0.3409	0.036
H35	0.3328	0.0763	0.4482	0.038
H36	0.4395	0.2118	0.4261	0.031
H38	1.0203	0.6039	0.8451	0.023
H40	0.9936	0.6345	0.5828	0.023
H42	0.8130	0.4225	0.7109	0.02
H44	0.9681	0.3252	0.7902	0.024
H45	0.9083	0.2042	0.9091	0.028
H46	0.7970	0.2444	1.0523	0.028

Table S7. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for bis(fulvene) 3.

Table S7. Hydrogen atomi	c coordinates and	l isotropic atomi	c displacement	parameters (Å	Λ^2) for bis(fulvene) 3.
		1	1	1 (

	x/a	y/b	z/c	U(eq)
H47	0.7489	0.4074	1.0758	0.028
H48	0.8081	0.5291	0.9570	0.025
H50	1.1808	0.7100	0.7940	0.03
H51	1.3015	0.8405	0.7574	0.036
H52	1.2948	0.9464	0.6234	0.038
H53	1.1623	0.9227	0.5279	0.04
H54	1.0432	0.7914	0.5636	0.034

Computational Methods and Results

All calculations were performed using Gaussian 09⁸ and GaussView 05.⁹ Density-functional geometry optimizations and vibrational frequency calculations were performed using Becke's three-parameter exchange functional¹⁰ along with the local/non-local correlation functional by Lee, Yang, and Parr¹¹ in conjunction with the standard 6-311G basis set.¹² Minimum-energy geometries were confirmed by the presence of no imaginary vibrational frequencies. Electronic excited state and subsequent spectrum calculations were performed using time-dependent DFT calculations using the same functional and basis set. Only singlet states were included in the excited state calculations.

All four molecular geometries were optimized with no imaginary vibrational frequencies. The gas-phase geometries show a 22 - 29° angle between the central group and the fulvene ring planes, somewhat larger than seen in the crystal structures. Calculations of the UV-vis spectra show an average deviation of 35 nm for the predicted λ_{max} of the most low energy peak (Table S8). However, because the HOMO-LUMO transition typically has a lower extinction coefficient, the HOMO-LUMO gap does not necessarily track with λ_{max} (Table S8). Plots of the HOMOs and LUMOs for 1 – 4 are shown below. The plots show that the fulvene moiety contains significant electron probability for both HOMO and LUMO for all four derivatives, although in 4 the thiophene ring also has significant electronic population. In 4, both the HOMO and LUMO extend over most of the molecule, whereas in the other molecules both the HOMO and LUMO are more localized. This may account for its relatively low HOMO-LUMO gap.

Fulvene	λ_{max} (calculated), nm	Δ (Theo – Expt), nm	HOMO-LUMO Gap, eV
---------	----------------------------------	----------------------------	-------------------

1	440	+35	2.13
2	456	+32	2.29
3	435	-22	2.16
4	563	+54	1.91

Calculated UV-Vis Spectra

Figure S13. Calculated UV-Vis spectrum of bis(fulvene) 1.

Figure S14. Calculated UV-Vis spectrum of bis(fulvene) 2.

Figure S15. Calculated UV-Vis spectrum of bis(fulvene) 3.

Figure S16. Calculated UV-Vis spectrum of bis(fulvene) 4.

Figure S17. HOMO (left) and LUMO (right) plots of bis(fulvene) 1.

Figure S18. HOMO (left) and LUMO (right) plots of bis(fulvene) 2.

Figure S19. Homo (left) and LUMO (right) plots of bis(fulvene) 3.

Figure S20. HOMO (left) and LUMO (right) plots of bis(fulvene) 4.

References

- a) Gerstel, P.; Klumpp, S.; Hennrich, F.; Poschlad, A.; Meded, V.; Blasco, E.; Wenzel, W.; Kappes, M.M.; Barner-Kowollik, C. ACS Macro Lett. 2014, 3, 10. b) Pei, J.; Wen, S.; Zhou, Y.; Dong, Q.; Liu, Z.; Zhang, J.; Tian, W. New J. Chem. 2011, 35, 385. c) Barik, S.; Friedland, S.; Skene, W.G. Can. J. Chem. 2010, 88, 945.
- 2. Sarker, A.M.; Ding, L.; Lahti, P.M.; Karasz, F. Macromolecules 2002, 35, 223.
- 3. Morin, J.; Drolet, N.; Tao, Y.; Leclerc, M. Chem. Mater. 2004, 16, 4619.
- 4. Peloquin, A.J.; Stone, R.L.; Avila, S.E.; Rudico, E.R.; Horn, C.B.; Gardner, K.A.; Ball, D.W.; Johnson, J.E.B.; Iacono, S.T.; Balaich, G.J. J. Org. Chem. 2012, 77, 6371.
- 5. APEX 2, SAINT and SADABS, Bruker **2013**, Bruker AXS Inc., Madison, Wisconsin, USA.
- 6. Sheldrick, G.M. Acta Cryst. 2008, A64, 112.
- 7. Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. J. Appl. Cryst. 2008, 41, 466.
- Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
- 9. GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J. Semichem Inc., Shawnee Mission, KS, 2009.
- 10. Becke, A. D. J. Chem. Phys., 1993, 98, 5648.
- 11. Lee, C.; Yang, W.; Parr R. G. Phys. Rev. B 1988, 37, 785.
- 12. a) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639. b) Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.