Nanoassembly of an Amphiphilic Cyclodextrin and Zn(II)-Phthalocyanine with Potential for Photodynamic Therapy of Cancer

Claudia Conte^a, Angela Scala^b, Gabriel Siracusano^c, Nancy Leone^d, Salvatore Patanè^e, Francesca Ungaro^a, Agnese Miro^a, Maria Teresa Sciortino^c, Fabiana Quaglia^{a*} and Antonino Mazzaglia^{b*}
^aDepartment of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
^bCNR-ISMN Institute of Nanostructured Materials c/o Dept of Chemical Sciences of the University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
^cDepartment of Biological and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31,98166, Messina, Italy
^dCNR-IPCF Institute for Chemical and Physical Processes stituto, V.le F. Stagno d'Alcontres 37, Faro Superiore, 98166 Messina, Italy
^eDepartment of Matter Physics and Electronic Engineering, University of Messina, V.le F. Stagno d'Alcontres 31 – 98166 Messina, Italy

S.1 Time-resolved fluorescence measurements

The excitation source was a synchronously mode-locked rhodamine 6G dye laser (Spectra Physics 375B) which provided excitation pulses of about 2 ps full width at half-maximum at a repetition rate of 82 MHz. An excitation wavelength of 570 nm was used. The fluorescence pulses were detected with a microchannel-plate photomultiplier (Hamamatsu R1645U-01, about 200 ps rising-time) and the decay profiles at 675 nm were collected with a computer-controlled multi-channel analyzer card (EG&G Ortec Trump-8k/2k). The

collected data were then analyzed using the non linear least-squares iterative reconvolution procedures based on the Marquardt algorithm. In the case of total fluorescence decay curves, the fitting was performed on the basis of the multiexponential decay law, ¹

$$I(t) = I_0 \sum_{i} \alpha_i \exp(-t/\tau_i)$$
(1)

where I(t) is the total fluorescence decay curve, I_0 is the intensity at time zero, and α_i and τ_i are, respectively, the relative amplitudes and lifetimes of the ith component (the normalization condition is $\sum_i \alpha_i = 1$). In the case of time-resolved anisotropy measurements, the reconvolution fitting procedure was

based on two steps. Fluorescence anisotropy r(t) is defined using the following expression:

$$r(t) = \frac{I_{VV}(t) - I_{VH}(t)}{I_{VV}(t) + 2I_{VH}(t)} = \frac{D(t)}{S(t)}$$
(2)

where the sum data, S(t), must be equal to the total intensity I(t). In some cases, an additive constant $r\infty$ to r(t) was introduced to take into account a long decay contribution due to static interaction with large clusters. In the simple case of spherical molecules, each rotational correlation time, τ_{Rj} , is related to the volume (V_j) of the rotating unit (or of the equivalent sphere) by the following equation:²

$$\tau_{Rj} = \frac{\eta V_j}{k_B T} \tag{3}$$

where η is the microviscosity of the medium, T is the temperature in Kelvin, and kB is the Boltzmann constant.

Figure S1. (A) Fluorescence time decay of ZnPc/SC16OH nanoassemblies dispersed in water(λ_{exc} =570 nm; λ_{em} =675 nm). The continuous red curve is the fit resulting from the convolution of the fluorescence decay and the excitation. (B) Time-resolved fluorescence anisotropy of ZnPc/SC16OH nanoassemblies dispersed in water (ZnPc concentration was fixed at 0.25 µg/mL).

S.2 Depolarized fluorescence spectra

Depolarized fluorescence spectra were measured by using Equation (4):³

$$r = \frac{I_{VV}I_{HH} - I_{VH}I_{HV}}{I_{VV}I_{HH} + 2I_{VH}I_{HV}}$$
(4)

where r is the anisotropy and I_{VV} , I_{HH} , I_{VH} , and I_{HV} are the fluorescence intensities registered with different polarizer orientations (V=vertical, H=horizontal).

Figure S2: Steady-state fluorescence emission spectra of free ZnPc in DMSO (red trace), ZnPc/SC16OH nanoassemblies in DMSO (violet trace), ZnPc/SC16OH nanoassemblies in CHCl₃ (black trace) and ZnPc/SC16OH nanoassemblies in water (blue trace). ZnPc concentration was fixed at 0.25 µg/mL in all the dispersions, λ_{exc} = 600 nm). In the inset the anisotropy of ZnPc in DMSO (red trace) and ZnPc/SC16OH nanoassemblies in CHCl₃ (blue trace) is reported.

S3. Overall properties of Nile Red/SC16OH nanoassembly (Nr/SC16OH). SD was calculated on three different batches.

	Nr/SC16OH	
Nile Red (% w/w)	0.2	
Yield (%)	75	
Mean D_{H} (nm ± SD)	195±8	
P.I.	0.198	
Zeta Potential (mV \pm	-28.3±3.5	
SD)		
Nile Red Actual	0.199 ± 0.03	
loading ^a	(71.2 ± 4.2)	
(Ent. Efficiency ^b)		

^aActual loading is expressed as the amount of Nile Red (mg) encapsulated per 100 mg of nanoassembly; ^b ratio between actual and theoretical loading x 100.

References

- N. Angelini, N. Micali, V. Villari, P. Mineo, D. Vitalini, E. Scamporrino, *Phys. Rev. E* 2005, 71, 021915.
- (2) A. Mazzaglia; N. Micali N.; L. Monsù Scolaro. Molecular recognition by means of photophysical investigation, in *Cyclodextrins Materials: Photochemistry, Photophysics and Photobiology*, Ed. Abderrazzak Douhal, Elsevier, Amsterdam, 2006, 203-222
- (3) J. R. Lackowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic, Plenum Publisher, New York 1999.