Electronic Supplementary Information

Ordered Mesoporous V₂O₅–WO₃ Composite Catalysts for Efficient Oxidation of Aryl Alcohols

Euaggelia Skliri^a, Ioannis N. Lykakis^b and Gerasimos S. Armatas^{*a}

^a Department of Materials Science and Technology, University of Crete, Voutes GR-71003, Heraklion, Greece.

^b Department of Chemistry, Aristotle University of Thessaloniki, University Campus GR-54124, Thessaloniki, Greece.

*E-mail: garmatas@materials.uoc.gr.

Fig. S1 Typical EDS spectra of mesoporous WO₃ materials containing (a) 1% and (b) 4% V₂O₅. The EDS spectra show an average atomic ratio W/V of ~97.5:2.5 and ~90.9:9.1 that corresponds to a ~1 wt % and ~3.8 wt % V₂O₅ loading for 1% V₂O₅/WO₃ and 4% V₂O₅/WO₃ composites, respectively.

Fig. S2 Low-angle XRD patterns of mesoporous (a) SBA-15 and (b) APS/SBA-15 materials. The indexing of the Bragg diffractions is consisted with a hexagonal p6mm unit cell with lattice parameter $a_0 \sim 11.1$ nm for SBA-15 and ~ 10.7 nm for APS/SBA-15.

Fig. S3 Nitrogen adsorption–desorption isotherms and the corresponding NLDFT pore size distribution (inset) for mesoporous (a) SBA-15 and (b) NH₂-functionalized SBA-15 (APS/SBA-15) materials. The SBA-15 shows specific surface area of 676 m²g⁻¹, total pore volume of 0.96 cm³g⁻¹ and narrow pore size distribution with pore width of 7.8 nm. The APS/SBA-15 shows specific surface area of 286 m²g⁻¹, total pore volume of 0.96 cm³g⁻¹ and narrow distribution of pore size with pore width of 7.4 nm. The pore wall thickness of modified silica (APS/SBA-15), estimated by the equation WT=a₀-D_p, is about 3.3 nm.

Fig. S4 Diffuse reflectance ultraviolet-visible (UV-vis) spectra of mesoporous (a) *meso*-WO₃ and (b) $1\% V_2O_5/WO_3$, (c) $4\% V_2O_5/WO_3$ and (d) $6\% V_2O_5/WO_3$ composite materials.

Fig. S5 Oxidation of 1-phenylethanol with 4% V_2O_5/WO_3 catalyst in different solvents. *Reaction conditions*: 0.1 mmol 1-phenylethanol, 50 mg catalyst, 40 equiv. *t*-BuOOH, 2 mL solvent, 50 °C, 4 h.

Fig. S6 Oxidation of 1-phenylethanol with 4% V_2O_5/WO_3 catalyst, using various equivalents of *t*-BuOOH oxidant. *Reaction conditions*: 0.1 mmol 1-phenylethanol, 50 mg catalyst, 2 mL CH₃CN, 50 °C, 2 h.

Fig. S7 Kinetic profiles (where C_0 and C_t are the concentrations of 1-phenylethanol at the initial state of reaction and at the time *t*, respectively) of the oxidation of 1-phenylethanol catalyzed by mesoporous *meso*-WO₃, *x*% V₂O₅/WO₃ (*x*= 1, 4 and 6) and S-4% V₂O₅/WO₃ materials and macroscopic *bulk*-4% V₂O₅/WO₃ solid.

Fig. S8 Nitrogen adsorption–desorption isotherms at 77K of reused 4% V_2O_5/WO_3 catalyst. Analysis of the adsorption data with the BET method gives surface area of 26 m²g⁻¹ and total pore volume of 0.05 cm³g⁻¹. Inset: the corresponding NLDFT pore size distribution, indicating pore size of ~4.5 nm

Fig. S9 (a) Time evolution and (b) kinetic profiles (where C_o and C_t are the concentrations of substrate at the initial state of reaction and at the time *t*, respective) of the oxidation of various *para*-substituted benzyl alcohols catalyzed by mesoporous 4% V₂O₅/WO₃ catalyst. In panel b the corresponding red lines are fit to the data. *Reaction conditions*: 0.1 mmol substrate, 50 mg catalyst, 40 equiv. *t*-BuOOH, 2 mL CH₃CN, 50 °C.