Prepared for publication in RSC Advances

October 10, 2014

Exploring Photophysical Properties of Metal-free Coumarin Sensitizers: An Efficient Strategy to Improve Performance of Dye-sensitized Solar

Jinghui Wang,^{*a*} Ming Li,^{*a*, *b*} Dan Qi,^{*a*} Wei Shen,^{*a*} Rongxing He^{**a*, *b*} and Sheng Hsien Lin^{*c*}

^a School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; E-mail: <u>herx@swu.edu.cn</u>

^b Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China

^c Department of Applied Chemistry, Institute of Molecular Science and Center for Interdisciplinary Molecular Science, National Chiao-Tung University, Hsinchu 300, Taiwan

Detailed discussion to confirm the significant role of π -spacer of model dyes in promoting the performance of DSSCs

Free dye

In this work, we firstly considered four parent coumarin-based sensitizers (NKX-2311, NKX-2677, NKX-2700 and NKX-2883) and combined the calculated results with experimental findings to confirm the significant role of π -spacer of sensitizers in promoting the J_{sc} of DSSCs. The only difference of structures for these four dyes is the π -spacers, as shown in Fig 1. As shown in Equation 1, the J_{sc} is determined by four factors: light harvest efficiency (φ_{LHE}), electron injection efficiency (φ_{inject}), charge collection efficiency (φ_{cc}) and the regeneration efficiency (φ_{reg}). We firstly discuss the function of different π -spacers in improving light harvesting efficiency (φ_{LHE}). Usually, the φ_{LHE} is closely related with oscillator strength (f) of coumarin dye associated to the λ , and it can be written as:

 $\varphi_{LHE} = 1 - 10^{-f}$

(1)

The maximum absorption wavelength (λ_{max}) and corresponding oscillation strength (f) and light harvesting efficiency (φ_{LHE}) for NKX-2311, NKX-2677, NKX-2700, and NKX-2883 are listed in Table 6S. As the π -spacer of NKX-2311 changes from vinylene unit to couple of thiophene moieties of NKX-2677, the red-shifted and strengthened Q band can be obtained, eventually resulting in higher light harvesting efficiency. Compared with NKX-2677, however, NKX-2700 and NKX-2883 display wider visible absorption bands, which are ascribed to the facts that the additional vinylene unit in NKX-2700 structure expands the π -system, and the auxiliary electron withdrawing -CN unit in NKX-2883 facilitates electron migration to the acceptor unit. Obviously, when the π -spacer of dye is expanded with introduction of different groups, the location of λ_{max} will red shift to a certain extent and follows the order of NKX-2311(459 nm) < NKX-2677 (508 nm) < NKX-2700 (527 nm) < NKX-2883(536 nm). Meanwhile, the values of φ_{LHE} (λ_{max}) comply with the sequence of NKX-2311(0.983) < NKX-2677 (0.986) < NKX-2700 (0.996) \approx NKX-2883 (0.994). Consequently, it is undoubtedly that the absorption of coumarin-based dyes can be extended to long-wavelength region leading to an improved spectral overlap with the solar spectrum, and the light-capturing ability can be enhanced through proper modification of the π -spacer, which would further improve the φ_{LHE} for high short-circuit current density (J_{sc}).

Generally, if the charge recombination process is effectively suppressed, the electron collection efficiency (φ_{cc}) will be improved. Clifford *et al* reported that the increase of link length of π -spacer could slow down the electron recombination rate. In our research, the length of π -spacers of these four model dyes follows the order of NKX-2311(3.796 Å) < NKX-2677 (9.215 Å) < NKX-2700 (11.674 Å) \approx NKX-2883 (11.225 Å). That is, the expansion of π -spacer will effectively inhibit the charge recombination efficiency, thereby improving electron collection efficiency (φ_{cc}). In addition, a favorable charge separation will facilitate electronic injection from excited dye to semiconductor surface, and then promote the photogenerated charge to be transported to the electrodes. Consequently, effective electron collection efficiency requires a good intramolecular charge separation with photoexcitation occurring. As shown in Table 1, the extension of the π -spacers prompts the electron densities of HOMOs of NKX-2677, NKX-2700 and NKX-2883 to distribute mainly on their donors (HOMO of NKX-2311 is delocalized over the whole dye molecule). Because of the almost same distribution of LUMOs' electron densities for these four dyes, the difference in HOMOs indicates more effective charge separation for NKX-2883. Thus, extending the π -spacer of dye with diverse groups not only retards the charge recombination efficiency, but also improves charge separation for high electron collection efficiency (φ_{cc}).

Besides, the regeneration efficiency (φ_{reg}) can be evaluated by the driver force of dye regeneration. The driver force for dye regeneration is represented by HOMO level of sensitizers. From Table 4, the HOMO levels of the model dyes are decreased slightly with the expansion of π -spacers, which implies the modification of π -spacers has slight effect on the performance of regeneration. As we known, the electron injection efficiency, φ_{inject} , depends on the competition between electron injection and charge recombination. Calculations shown that the driver force (see Table 4) for electron injection of these four dyes is sufficiently high, this induces the effective electron transfer from dye to semiconductor surface. Meanwhile, the charge recombination process is effectively suppressed by extending the linker of dyes. As a consequence, more effective electron injection can be obtained by modifying π -spacer of dyes.

Owing to broader absorption band in the NIR region and higher φ_{LHE} , more effective charge separation and slower charge recombination, the values of J_{sc} for NKX-2677, NKX-2700 and NKX-2883 are increased greatly relative to that of NKX-2311, indicating higher η for the DSSCs based on NKX-2677, NKX-2700 and NKX-2883. The present results are in good agreement with

the experiment findings. Undoubtedly, the performance of DSSCs can be improved through appropriate modification of dye structure with suitable π -spacer.

dye/ TiO₂ complexes

The simulated absorption spectra of NKX-2311/TiO₂, NKX-2677/TiO₂, NKX-2700/TiO₂ and NKX-2883/TiO₂ complexes are shown in Figures 1S-3S. Compared with the four isolated dyes (NKX-2311, NKX-2677, NKX-2700 and NKX-2883), the four dye-titania complexes achieve slight red-shift and broadening of the absorption peaks (the maximum absorption peaks are red-shifted by ~55, ~31, ~32 and ~20 nm, respectively, see Figure 1S and Table 4S), which are ascribed to the increased delocalization of the LUMO orbitals of the conjugated frameworks. Compared with NKX-2311/TiO₂, one of the most remarkable absorption features of the other complexes is the red-shifted bands, and they complied with the sequence of NKX-2311(514 nm) < NKX-2677 (539 nm) < NKX-2700 (559 nm) \approx NKX-2883 (556 nm). This means that the extension of the length of π -space of dye could directly influence the absorption spectra of dye-titania complexes. Furthermore, the modification of the coumarin dye with various π -spacers significantly affects the oscillator strength of dye-titania complex. As listed in Table 4S, the oscillator strengths (*f*) of these four dye-titania complexes are enhanced (*f*=2.025, 2.210, 2.710 and 2.627 for NKX-2311/TiO₂, NKX-2677/TiO₂, NKX-2700/TiO₂ and NKX-2883/TiO₂), which subsequently improves the light harvesting efficiency of these complexes. It is notable that no new bands are observed in the absorption spectra of the four dye-titania complexes relative to the four isolated dyes, indicating in present case the electron injection should adopt the indirect mechanism from donor of dye to semiconductor surface via acceptor (π -spacer and anchor groups).

The absorption spectra for these four complexes consist of many photo-excitations. Some of these excitations having relatively high oscillator strength are presented in Table 4S. For these four complexes, most of these photo-excitations originate from HOMO and HOMO-1 except NKX-2311(only from HOMO). The electron densities of HOMO and HOMO-1 are mainly localized on dye part of the complexes and are similar to the HOMO and HOMO-1 of isolated dyes, as shown in Figures 5S-7S. From Table 4S, the unoccupied orbitals that participate in the major excitations come from LUMO. Besides, there are some other molecular orbitals involved in the major excitations, such as LUMO+1 and LUIMO+16 of NKX-2677/TiO₂ complex. Among these unoccupied orbitals, LUMO shows highest contribution and is shown in Figure 5S. Remarkably, for LUMO orbital of these four complexes, only a few electron densities are delocalized on the cluster, indicating a weak interaction between excited dye and the surface of TiO₂, which favors the indirect mechanism for electron injection again.

After binding to titanium there is a redistribution of energy levels. The computed Kohn-Sham orbital energy levels for isolated dyes, $(TiO_2)_{16}$ cluster and dye/TiO₂ complexes are presented in Figure 4. The green line represents localization of molecular orbital both on the dye and the surface, blue denotes localization of molecular orbital on TiO₂ and red represents localization of molecular orbital on dyes. As reported in previous studies, the higher the LUMO is located in the semiconductor conduction band, the more efficient the electron injection is. From Figure 4, for all complexes, the LUMO is higher relative to the lower edge of the TiO₂ conduction band, which makes the electron injection be easy. As we have testified before, the absorption properties of NKX-2883 are comparable to those of NKX-2700, the former is even more outstanding. However, the η of NKX-2883-based DSSCs is slightly lower than that of NKX-2700-based DSSCs because the LUMO of NKX-2883/TiO₂ complex is relatively lower that of NKX-2700/TiO₂ complex, eventually reducing the efficiency of electron injection of NKX-2883. In addition, the partial and total densities of states for absorbed dyes have been calculated (Figure 4S). We notice that for all complexes, their unoccupied molecular orbitals have small overlap with the conduction band of TiO₂, and the overlap is slightly improved with the alteration of the π -spacer of dyes, indicating weak electronic coupling between dyes and TiO₂. It confirms again that the extension of the length of π -bridge with thienyl, vinylene or -CN groups has important influence on electronic coupling between dyes and TiO₂.

Overall, for these four systems, the absorption properties of dye/TiO₂ complexes are closely related to those of their free dyes. The extension of π -space of dyes with different groups effectively improves the optical performance of dye/TiO₂ complexes. Thus, rationally modification of the π -spacer can improve absorption spectra, re-shift orbital energy levels, and further boosts the performance of DSSCs.

Figure Captions

Fig. 1S (a) Simulated optical absorption for free sensitizers (b) Simulated absorption spectra for dyes absorbed on $Ti_{16}O_{32}$ cluster. The absorption spectra are simulated using M062X functional with 6-31g(d,p) basis set

Fig. 2S (a) Simulated optical absorption for free sensitizers (b) Simulated absorption spectra for dyes absorbed on $Ti_{16}O_{32}$ cluster. The absorption spectra are simulated using B3LYP functional with 6-31g(d,p) basis set

Fig. 3S (a) Simulated optical absorption for free sensitizers (b) Simulated absorption spectra for dyes absorbed on $Ti_{16}O_{32}$ cluster. The absorption spectra are simulated using PBE0 functional with 6-31g(d,p) basis set

Fig. 4S Total densities of states (TDOS) and partial densities of states (PDOS) for the eight coumarin-based dyes (the blue dashed line corresponds to TDOS, the red full line corresponds to TiO_2 (PDOS), and the black line corresponds to dye (PDOS)).

Fig. 5S Molecular orbitals relevant during photoexcitation for: $2311/\text{TiO}_2$, $2677/\text{TiO}_2$, $2700/\text{TiO}_2$, $2883/\text{TiO}_2$, $2883-\text{P1/TiO}_2$, $2883-\text{P1/Ti$

Fig. 6S Molecular orbitals relevant during photoexcitation for: $2311/\text{TiO}_2$, $2677/\text{TiO}_2$, $2700/\text{TiO}_2$, $2883/\text{TiO}_2$, $2883-\text{P1/TiO}_2$, $2883-\text{P1/Ti$

Fig. 7S Molecular orbitals relevant during photoexcitation for: $2311/\text{TiO}_2$, $2677/\text{TiO}_2$, $2700/\text{TiO}_2$, $2883/\text{TiO}_2$, $2883-\text{P1/TiO}_2$, $2883-\text{P1/Ti$

Fig. 8S Frontier molecular orbital spatial distribution for free dyes (B3LYP)

Fig. 9S Frontier molecular orbital spatial distribution for free dyes (PBE0)

Fig. 10S Calculated UV/Vis absorption spectra four series sensitizers in ethanol solution obtained by using B3LYP functional with 6-31G(d,p) basis set, (a) NKX-2677, NKX-2677-P1 and NKX-2677-P2; (b) NKX-2700, NKX-2700-P1 and NKX-2700-P2; (c) NKX-2883, NKX-2883-P1 and NKX-2883-P2; (d) NKX-2883, NKX-2883-Q1 and NKX-2883-Q2

Fig. 11S Calculated UV/Vis absorption spectra four series sensitizers in ethanol solution obtained by using PBE0 functional with 6-31G(d,p) basis set, (a) NKX-2677, NKX-2677-P1 and NKX-2677-P2; (b) NKX-2700, NKX-2700-P1 and NKX-2700-P2; (c) NKX-2883, NKX-2883-P1 and NKX-2883-P2; (d) NKX-2883, NKX-2883-Q1 and NKX-2883-Q2

Fig. 12S Molecular orbital energy level (eV) diagram of (column 1) 2311/TiO₂ complex, (column 2) NKX-2311 dye, (column 3) 2677/TiO₂ complex, (column 4) NKX-2677 dye, (column 5) 2700/TiO₂ complex, (column 6) NKX-2700, (column 7) 2883/TiO₂ complex, (column 8) NKX-2883 dye, (column 9) isolated TiO₂, (column 10) NKX-2883-P1 dye, (column 11) 2883-P1/TiO₂ complex, (column 12) NKX-2883-P2 dye, (column 13) 2883-P2/TiO₂ complex, (column 14) NKX-2883-Q1 dye, (column 15) NKX-2883-Q1/TiO₂ complex, (column 16) NKX-2883-Q2 dye, (column 17) 2883-Q2/TiO₂ complex in ethanol solution. Green represents localization of molecular orbital both on the dye and the surface. Blue represents localization of molecular orbital on TiO₂. Red represents localization of molecular orbital on dyes (B3LYP)

Table Captions

Table 1S Transition energies (in eV) of S_0 - S_1 transition for NKX-23111, NKX-2677, KNX-2700 and NKX-2883 coumarin dyes in ethanol solution with B3LYP/6-31g(d,p) geometries

Table 2S The HOMO energy levels (in eV) and corresponding oxidized potential (vs NHE, in eV) of ground state ($E_{ox(dye)}$) for NKX-2311, NKX-2677, NKX-2700, and NKX-2883. All values are calculated with B3LYP/6-31g(d,p) geometries

Table 3S Transition energies (in eV) of S_0 - S_1 transition for dyes (NKX-23111, NKX-2677, KNX-2700 and NKX-2883) in ethanol solution. Geometries structures are optimized with different functionals.

Table 4S Electronic transition data obtained by TD-M062X/6-31g(d,p) level for all free dyes and dye-titania complexes in ethanol solution with B3LYP/6-31g(d,p) geometries

Table 5S Estimated $\Delta G_{(aq)}$, ΔG^0 , ΔE_{ver} , $E_{ox(dye)}$, ΔG_{reg} , f and *LHE* for all coumarin sensitizers. All calculation is obtained by M062X functional with b-31g(d,p) basis set

Table 6S Maximum absorption wavelength (λ_{max}) and the corresponding oscillation strength (*f*) and light harvest efficiency (φ_{LHE}) for NKX-2311, NKX-2677, NKX-2700, and NKX-2883

Table 7S Estimated $\Delta G_{(aq)}$, ΔG^0 , ΔE_{ver} , $E_{ox(dye)}$, ΔG_{reg} , f and *LHE* for all coumarin sensitizers. All calculation is obtained by B3LYP functional with b-31g(d,p) basis set

Table 8S Electronic transition data obtained by TD-B3LYP/6-31g(d,p) level for all free dyes and dye-titania complexes in ethanol solution with B3LYP/6-31g(d,p) geometries

Table 9S Electronic transition data obtained by TD-PBE0/6-31g(d,p) level for all free dyes and dye-titania complexes in ethanol solution with B3LYP/6-31g(d,p) geometries

Table 10S Electron density difference plots of electronic transition $S_0 \rightarrow S_1$ for each coumarin dyes performed in ethanol solution using the B3LYP functional with 6-31G(d,p) basis set. *L* is the electron transfer distance (Å); Δe is the fraction of electron exchange ($|e^-|$), Ω is overlaps between the regions of density depletion and increment. (Isovalue: 4×10^{-4} e au⁻³)

Table 11S Electron density difference plots of electronic transition $S_0 \rightarrow S_1$ for each coumarin dyes performed in ethanol solution using the PBE0 functional with 6-31G(d,p) basis set. *L* is the electron transfer distance (Å); Δe is the fraction of electron exchange ($|e^-|$), Ω is overlaps between the regions of density depletion and increment. (Isovalue: 4×10^{-4} e au⁻³)

 Table 12S Electron density difference plots of electron transitions with oscillation strength larger than 0.1 for all dyes using M062X functional

 Table 13S
 Electron density difference plots of electron transitions with oscillation strength larger than 0.1 for all dyes using B3LYP functional

Table 14S Electron density difference plots of electron transitions with oscillation strength larger than 0.1 for all dyes using PBE0 functional

Table 15S Calculated HOMO, LUMO energy levels (eV) of all sensitizers and the HOMO, LUMO energy levels (eV) of the donor (coumarin343) and the acceptor (conjugated π -spacer and anchoring group) fragments of all sensitizer obtained by B3LYP functional **Table 16S** Calculated HOMO, LUMO energy levels (eV) of all sensitizers and the HOMO, LUMO energy levels (eV) of the donor (coumarin343) and the acceptor (conjugated π -spacer and anchoring group) fragments of all sensitizer obtained by M062X functional

Table 17S Molecular orbital composition (in %) of the highest occupied and two lowest unoccupied molecular orbital of the twelve coumarin sensitizers performed in ethanol solvent using B3LYP functional and the 6-31G(d,p) basis set.

Table 18S Molecular orbital composition (in %) of the highest occupied and two lowest unoccupied molecular orbital of the twelve coumarin sensitizers performed in ethanol solvent using PBE0 functional and the 6-31G(d,p) basis set.

Table 19S Estimated energy (a.u) of the oxidized coumarin dyes in ethanol solvent using PBE0 functional and the 6-31G(d,p) basis set **Table 20S** Estimated energy(a.u) of the oxidized coumarin dyes in ethanol solvent using B3LYP functional and the 6-31G(d,p) basis set

Table 21S Estimated energy (a.u) of the oxidized coumarin dyes in ethanol solvent using M062X functional and the 6-31G(d,p) basis set

Fig. 1S (a) Simulated optical absorption for free sensitizers (b) Simulated absorption spectra for dyes absorbed on $Ti_{16}O_{32}$ cluster. The absorption spectra are simulated using M062X functional with 6-31G(d,p) basis set

Fig. 2S (a) Simulated optical absorption for free sensitizers (b) Simulated absorption spectra for dyes absorbed on $Ti_{16}O_{32}$ cluster. The absorption spectra are simulated using B3LYP functional with 6-31G(d,p) basis set.

Fig. 3S (a) Simulated optical absorption for free sensitizers (b) Simulated absorption spectra for dyes absorbed on $Ti_{16}O_{32}$ cluster. The absorption spectra are simulated using PBE0 functional with 6-31G(d,p) basis set.

Fig. 4S Total densities of states (TDOS) and partial densities of states (PDOS) for the eight coumarin-based dyes (the blue dashed line corresponds to TDOS, the red full line corresponds to TiO_2 (PDOS), and the black line corresponds to dye (PDOS)).

	1					
NKX-2311						
	номо	LUMO				
NKX-2677						
	HOMO-1	НОМО	LUMO	LUMO+1	LUMO+8	LUMO+16
	LUMO+17	LUMO+19				
NKX-2700	HOMO-1	HOMO	HIMO	LIMO+1	HIMO+8	
	HOMO-1	номо	LOMO	LUMO+1	LUMOTO	LUMOTIS
NKX-2883		oto an lot				
	НОМО-3	HOMO-1	НОМО	LUMO	LUMO+3	LUMO+4
	LIMO+5	LUMO+10				

Fig. 5S Molecular orbitals relevant during photoexcitation for: 2311/TiO2, 2677/TiO2, 2700/TiO2, 2883/TiO2, 2883-P1/TiO2,

2883-P2/TiO_2, 2883-Q1/TiO_2 and 2883-Q2/TiO_2 complexes (M062X)

Fig. 6S Molecular orbitals relevant during photoexcitation for: 2311/TiO₂, 2677/TiO₂, 2700/TiO₂, 2883/TiO₂, 2883-P1/TiO₂,

2883-P2/TiO₂, 2883-Q1/TiO₂ and 2883-Q2/TiO₂. (B3LYP)

NKX-2883-P1				ر دی می در رو دو می و دو د رو می مودی در رو می و دو در رو می در رو می مرد	در می دود . رویک می دور . رویک می دویک رویک می دویک رویک می می دو رویک	
			- Base	دي هي اي من من من من من من من		
	र हे दुई	Startes	2 2 9 4 S	Z .		
	HOMO-1	НОМО	LUMO	LUMO+2	LUMO+3	LUMO+4
	ر رگی دور ر روخته ه دور روخته دو طوید روخ ه طوید روخ ه دو ه ه دو ه روخ ه	در که در دکتند و خور در و به و خور در و به و خور در و و و و و	در کی۔ در کی کی ج در کی کی کی در در کی کی کی در در کی کی در کی کی در در کی کی در کی		در کار می بود و درمانی می بود درمانی می بودی درمانی می بودی می بود می بود می بود	
	م بالم م م م م م	دي. محمد محمد محمد محمد محمد محمد محمد محمد	الم	64) 1411 1411	ي مغرب - من من من - من من من - من من من	
		19 8 8 19 19 19 19 19 19 19 19 19 19 19 19 19			2.2.8	
	LUMO+5	LUMO+6	LUMO+7	LUMO+8	LUMO+10	LUMO+11
NKX-2883-P2		•	می شی شی د میری بر هی خون د میری به می خون د می ه می می ه ه می می	ری شی آدی ہ ری جن کی لڑی ' ری جن کی کری ' رو جن جن رو جن جن	ి సత్త చిద్దం " పరీ లై చిద్దం - ప్రత్తి - చిద్దం - చద్దం - చద్రం - చద్రం - చద్రం - చద్దం - చద్దం - చద్దం - చద్దం - చద్దం - చద్రం - చ - చద్రం - చదం - చద్రం - చద్రం - చద్రం - చద్రం - చద్రం - చద్రం - పైరం - పైర - పైరం	بى قىقى قورى بەرەب قىي قورى بەرىقى بەرىقە بەرىقە
				, a , a , a , a , a , a , a , a , a , a		, a., a., 9 a., a.,
		- 4 - 4 - 4 - 4		• 3 3 4 • 3 3 4 • 4 5	• a _ a _ a	
	5 - 2 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		5 0 000			
	HOMO-2	НОМО	LUMO	LUMO+1	LUMO+2	LUMO+3
	بى قەرىخى مەرى قارىغى مەرىكى مەرىخە مەرىخە مەرىخە	ئىڭى قىن ئىرىكى قى قۇن قىلى قى قۇر مۇرىقى ئەرىمە	دي شي گري د د واحدي دري 20 د د مري هي د مري شي مور مري د			
	- 494 - 494	وهو د موم د موم د موم موم	ه م روستان روستان روستان میریک			
	- 3 \$					
	LUMO+4	LUMO+5	LUMO+13			a. a
NKX-2883-Q1				د می می می می در بر این می می می می بر این می می می بر این می می بر این می می بر این می می می می می می بر این می می بر این می می بر این می می می بر این می می بر این می بران می بر ای می ای می ای می می ار می ار می می ار می ار	در المحمد المحم المم المم المم المحم المحم المم المم المم المحم المحم المم المم المم المم المم الممم الممم الممم الممم المم المم الممم الممم الممم الممم	
				1 .		
	HOMO-1	НОМО	LUMO	LUMO+1	LUMO+2	LUMO+3
	ر می من می در رودی خور رودی خور می می م د خور م می مور می مر	د من	مر دی مر م روز دی م م مر م روز دی م م مر م م م م م م م م م م م م م م		دو می ماد دو های می حقید در های می حقید در های ماد می ماد	
	م هری م اوضو اوضو اوضو اوضو اوضو اوضو اوضو اوض	5 9 45, 5 9 4 7 9 4 9 7 9 4 9 7 9 4 9 9 4 9 9 4 7 9 9 9 4 7 9 9 9 4 7 9 9 9 4 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	و شوه به هم به هو به هو به هو هو م	ور می به می به می به می به می ور می ور می	ه می می به می به می باقی می می می می می	
	LUMO+5	LUMO+6	LUMO+7	LUMO+9	LUMO+10	

Fig. 7S Molecular orbitals relevant during photoexcitation for: $2311/\text{TiO}_2$, $2677/\text{TiO}_2$, $2700/\text{TiO}_2$, $2883/\text{TiO}_2$, $2883-\text{P1/TiO}_2$, $2883-\text{P1/Ti$

	Номо	HOMO-1	LUMO	LUMO+1
NKX-2311				
NKX-2677		·		
NKX-2677-P1		5-0)		
NKX-2677-P2				
NKX-2700	20,00°	in the second		
NKX-2700-P1		Kalety.		
NKX-2700-P2	.	254000		
NKX-2883	and the second second			
NKX-2883-P1				
NKX-2883-P2				

Fig. 8S Frontier molecular orbital spatial distribution for free dyes (B3LYP)

	НОМО	HOMO-1	LUMO	LUMO+1
NKX-2311	ŚŚŻŚ			
NKX-2677				
NKX-2677-P1				
NKX-2677-P2				
NKX-2700		8-3)-lo4.		
NKX-2700-P1		SCORE .		
NKX-2700-P2	Ö piseite			
NKX-2883	all below			
NKX-2883-P1		in the second second		
NKX-2883-P2				

Fig. 9S Frontier molecular orbital spatial distribution for free dyes (PBE0)

Fig. 10S Calculated UV/Vis absorption spectra four series sensitizers in ethanol solution obtained by B3LYP functional with 6-31G(d,p) basis set (a) NKX-2677, NKX-2677-P1 and NKX-2677-P2; (b) NKX-2700, NKX-2700-P1 and NKX-2700-P2; (c) NKX-2883, NKX-2883-P1 and NKX-2883-P2; (d) NKX-2883, NKX-2883-Q2

Fig. 11S Calculated UV/Vis absorption spectra four series sensitizers in ethanol solution obtained by B3LYP functional with 6-31G(d,p) basis set (a) NKX-2677, NKX-2677-P1 and NKX-2677-P2; (b) NKX-2700, NKX-2700-P1 and NKX-2700-P2; (c) NKX-2883, NKX-2883-P1 and NKX-2883-P2; (d) NKX-2883, NKX-2883-Q2

Fig. 12S Molecular orbital energy level (eV) diagram of (column 1) $2311/\text{TiO}_2$ complex, (column 2) NKX-2311 dye, (column 3) $2677/\text{TiO}_2$ complex, (column 4) NKX-2677 dye, (column 5) $2700/\text{TiO}_2$ complex, (column 6) NKX-2700, (column 7) $2883/\text{TiO}_2$ complex, (column 8) NKX-2883 dye, (column 9) isolated TiO₂, (column 10) NKX-2883-P1 dye, (column 11) $2883-\text{P1/TiO}_2$ complex, (column 12) NKX-2883-P2 dye, (column 13) $2883-\text{P2/TiO}_2$ complex, (column 14) NKX-2883-Q1 dye, (column 15) NKX-2883-Q1/TiO₂ complex, (column 16) NKX-2883-Q2 dye, (column 17) $2883-\text{Q2/TiO}_2$ complex in ethanol solution. Green represents localization of molecular orbital both on the dye and the surface. Blue represents localization of molecular orbital on TiO₂. Red represents localization of molecular orbital on dyes (B3LYP)

Method	2311	2677	2700	2883	
B3LYP	2.468	1.946	1.864	1.909	ethanol
	2.479	1.966	1.879	1.922	THF
PBE0	2.528	2.047	1.962	1.998	
CAM-B3LYP	2.746	2.465	2.373	2.342	
LC-WPBE	2.916	2.759	2.682	2.598	
M062X	2.704	2.439	2.351	2.313	
WB97XD	2.779	2.549	2.550	2.407	
Experimental ^a	2.460	2.427	2.362	2.246	

Table 1S Transition energies (in eV) of S_0 - S_1 transition for NKX-23111, NKX-2677, KNX-2700 and NKX-2883 coumarin dyes in ethanol solution with B3LYP/6-31g(d,p) geometries

a Experimental value from Ref. 12, 22, 23,24

Method	NKX-	2311	NKX-	2677	NKX-	2700	NKX-	2883
	номо	E _{ox(dye)}						
B3LYP	5.307	0.867	4.967	0.527	5.055	0.615	5.161	0.721
PBE0	5.529	1.089	5.277	0.837	5.188	0.748	5.386	0.946
PBE0 ^a	5.571	1.131	5.340	0.900	5.250	0.810	5.462	1.022
CAM-B3LYP	6.436	1.996	6.232	1.792	6.145	1.705	6.306	1.866
LC-WPBE	7.586	3.146	7.455	3.015	6.145	1.705	7.508	3.068
M062X	6.398	1.958	6.195	1.755	6.115	1.675	6.268	1.828
M062X ^a	6.444	2.004	6.194	1.754	6.091	1.651	6.300	1.860
WB97XD	7.003	2.563	6.813	2.373	6.740	2.300	6.879	2.439
Experimental ^[b]		1.3		0.91		0.82		0.97

Table 2S The HOMO energy levels (in eV) and corresponding oxidized potential (vs NHE, in eV) of ground state ($E_{ox(dye)}$) for NKX-2311, NKX-2677, NKX-2700, and NKX-2883. All values are calculated with B3LYP/6-31g(d,p) geometries

a HOMO are computed by single point calculation based on the B3LYP/6-31g(d, p) optimized geometries.

b Experimental value from Ref. 12, 22, 23,24

Method	2311	2677	2700	2883
B3LYP	2.468	1.946	1.864	1.909
PBE0	2.545	2.075	1.992	2.025
CAM-B3LYP	2.858	2.673	2.600	2.514
LC-WPBE	3.195	3.226	2.944	2.951
M062X	2.810	2.635	2.571	2.471
WB97XD	2.903	2.818	2.583	2.705
Experimental ^a	2.46	2.43	2.36	2.24

Table 3S Transition energies (in eV) of S_0 - S_1 transition for dyes (NKX-23111, NKX-2677, KNX-2700 and NKX-2883) in ethanol solution. Geometries structures are optimized with different functionals.

a Experimental value from Ref. 12, 22, 23,24

Transition energy	Wavelength/	Oscillator strength /	Wavelength
(eV)	nm	Light harvesting efficiency	
NKX-2311			
$2.704(S_0 \rightarrow S_1)$	459	1.774/0.983	HOMO->LUMO (95%)
4.393(S ₀ →S ₄)	282	0.180/0.339	H-2->LUMO (28%), H-1->LUMO (48%), HOMO->L+1 (19%)
$4.832(S_0 \rightarrow S_5)$	257	0.110/0.224	HOMO->L+2 (79%), H-2->LUMO (6%)
$5.729(S_0 \rightarrow S_{12})$	216	0.147/0.287	H-2->L+1 (75%), H-3->LUMO (8%)
$6.397(S_0 \rightarrow S_{18})$	194	0.314/0.517	H-2->L+2 (56%), HOMO->L+6 (14%)
$6.483(S_0 \rightarrow S_{19})$	191	0.101/0.207	H-10->LUMO (11%), H-8->LUMO (11%), H-1->L+2 (21%),
			HOMO->L+6 (15%),H-11->LUMO (7%), H-3->L+1 (8%), H-2->L+2 (6%),H-1
$6.580(S_0 \rightarrow S_{20})$	188	0.116/0.234	H-1->L+4 (18%), HOMO->L+4 (63%)
$6.704(S_0 \rightarrow S_{22})$	185	0.139/0.274	H-2->L+3 (38%), H-1->L+2 (25%), H-1->L+3 (17%), H-3->L+2 (5%)
$7.055(S_0 \rightarrow S_{27})$	176	0.102/0.209	H-10->LUMO (14%), H-3->L+1 (60%)
NKX-2311/TiO ₂			
$2.410(S_0 \rightarrow S_1)$	514	2.025/0.991	HOMO->LUMO (91%)
NKX-2677			
$2.439(S_0 \rightarrow S_1)$	508	1.851/0.986	HOMO->LUMO (82%), H-1->LUMO (9%), HOMO->L+1 (6%)
$3.329(S_0 \rightarrow S_2)$	372	0.177/0.334	H-1->LUMO (33%), HOMO->L+1 (61%)
$3.640(S_0 \rightarrow S_3)$	341	0.180/0.339	H-1->LUMO (50%), HOMO->LUMO (14%), HOMO->L+1 (27%)
$4.656(S_0 \rightarrow S_8)$	266	0.132/0.262	H-2->LUMO (10%), H-1->L+1 (19%), HOMO->L+2 (34%),
			HOMO->L+3 (16%),H-3->LUMO (6%)
$6.057(S_0 \rightarrow S_{25})$	205	0.112/0.227	H-13->LUMO (13%), H-5->L+1 (32%), H-6->L+1 (9%), H-5->L+2 (6%),
			H-3->L+2 (9%)
$6.201(S_0 \rightarrow S_{27})$	200	0.213/0.388	H-5->L+1 (10%), H-2->L+2 (14%), H-2->L+3 (29%), H-5->L+4 (5%)
$6.230(S_0 \rightarrow S_{29})$	199	0.320/0.521	H-13->LUMO (14%), H-6->L+1 (10%), H-5->L+1 (17%), H-2->L+3 (17%),
			H-5->L+2 (5%), H-2->L+2 (9%)
NKX-2677-TiO ₂			
$2.300(S_0 \rightarrow S_1)$	539	2.210/0.994	H-1->LUMO (11%), HOMO->LUMO (78%)
$3.240(S_0 \rightarrow S_2)$	383	0.114/0.231	H-1->LUMO (36%), HOMO->L+16 (25%), HOMO->L+8 (5%),
			HOMO->L+17 (6%), HOMO->L+19 (7%)
$3.480(S_0 \rightarrow S_4)$	356	0.231/0.413	H-1->LUMO (34%), HOMO->LUMO (15%), HOMO->L+1 (11%),
			HOMO->L+16 (11%)
NKX-2677-P1			
$2.537(S_0 \rightarrow S_1)$	489	2.067/0.991	HOMO->LUMO (79%), HOMO->L+1 (11%),H-1->LUMO (7%)
3.819(S ₀ →S ₃)	325	0.277/0.472	H-1->LUMO (72%), HOMO->LUMO (12%),H-4->LUMO (5%),
			HOMO->L+1 (5%)
$4.501(S_0 \rightarrow S_8)$	275	0.104/0.213	H-4->LUMO (14%), H-1->L+1 (28%), HOMO->L+3 (32%),
			H-2->LUMO (5%), HOMO->L+2 (5%), HOMO->L+4 (7%)
$4.723(S_0 \rightarrow S_{10})$	263	0.134/0.265	H-4->LUMO (12%), H-1->L+1 (30%), HOMO->L+3 (21%),
			HOMO->L+4 (16%), H-2->LUMO (9%)
$6.205(S_0 \rightarrow S_{29})$	200	0.175/0.332	H-14->LUMO (20%), H-4->L+1 (11%), H-2->L+4 (12%),

Table 4S Electronic transition data obtained by TD-M062X/6-31g(d,p) level for all free dyes and dye-titania complexes in ethanol solution with B3LYP/6-31g(d,p) geometries

			H-1->L+2 (12%),H-15->LUMO (5%), H-2->L+3 (5%), H-1->L+3 (6%)
$6.240(S_0 \rightarrow S_{30})$	199	0.557/0.723	H-4->L+1 (10%), H-2->L+3 (19%), H-2->L+4 (43%)
NKX-2677-P2			
$2.809(S_0 \rightarrow S_1)$	441	1.789/0.984	HOMO->LUMO (70%), HOMO->L+1 (21%),H-2->LUMO (5%)
$4.011(S_0 \rightarrow S_5)$	309	0.678/0.790	H-4->LUMO (10%), H-2->LUMO (65%), H-1->LUMO (10%),
			HOMO->LUMO(9%)
$6.153(S_0 \rightarrow S_{29})$	202	0.446/0.642	H-1->L+3 (35%), H-1->L+5 (41%)
NKX-2700			
$2.351(S_0 \rightarrow S_1)$	527	2.350/0.996	HOMO->LUMO (81%),H-1->LUMO (9%), HOMO->L+1 (6%)
$3.208(S_0 \rightarrow S_2)$	387	0.170/0.324	H-1->LUMO (35%), HOMO->L+1 (56%)
$3.516(S_0 \rightarrow S_3)$	353	0.202/0.372	H-1->LUMO (46%), HOMO->LUMO (15%), HOMO->L+1 (29%)
$5.847(S_0 \rightarrow S_{23})$	212	0.117/0.236	H-8->LUMO (23%), H-6->L+1 (17%), H-5->L+1 (14%), H-3->L+2 (12%),
			H-4->L+1 (5%)
$6.143(S_0 \rightarrow S_{28})$	202	0.174/0.330	H-3->L+2(10%), H-2->L+2(17%), H-2->L+3(23%),H-1->L+3(11%),
			H-8->LUMO(6%), HOMO->L+5(6%), HOMO->L+10(5%)
$6.200(S_0 \rightarrow S_{30})$	200	0.325/0.527	H-2->L+2(10%), H-2->L+3(23%), H-1->L+3(23%),H-3->L+2(7%),
			H-3->L+3(8%), HOMO->L+5(7%), HOMO->L+6(5%)
NKX-2700/TiO2			
$2.218(S_0 \rightarrow S_1)$	559	2.710/0.998	H-1->LUMO (12%), HOMO->LUMO (77%)
$3.115(S_0 \rightarrow S_2)$	398	0.115/0.233	H-1->LUMO (41%), HOMO->L+15 (29%), HOMO->L+8 (5%)
$3.369(S_0 \rightarrow S_3)$	368	0.270/0.463	H-1->LUMO (32%), HOMO->LUMO (18%), HOMO->L+15 (18%),
			HOMO->L+1 (5%)
NKX-2700-P1			
$2.403(S_0 \rightarrow S_1)$	516	2.194/0.994	HOMO->LUMO (78%), HOMO->L+1 (11%),H-1->LUMO (9%)
$3.327(S_0 \rightarrow S_2)$	373	0.166/0.318	H-1->LUMO (18%), HOMO->L+1 (66%), HOMO->L+2 (8%)
$3.594(S_0 \rightarrow S_3)$	345	0.334/0.537	H-1->LUMO (60%), HOMO->LUMO (17%), HOMO->L+1 (12%)
$4.543(S_0 \rightarrow S_{10})$	273	0.132/0.259	H-4->LUMO (38%), H-3->LUMO (13%), HOMO->L+2 (10%),
			HOMO->L+3 (11%)
$6.147(S_0 \rightarrow S_{30})$	202	0.373/0.576	H-4->L+7 (15%), H-2->L+2 (27%), H-2->L+4 (36%), H-2->L+1 (7%)
NKX-2700-P2			
$2.749(S_0 \rightarrow S_1)$	451	2.178/0.993	H-1->LUMO (11%), HOMO->LUMO (64%), HOMO->L+1 (21%)
$3.740(S_0 \rightarrow S_3)$	331	0.578/0.736	H-1->LUMO (53%), HOMO->LUMO (27%), HOMO->L+1 (9%)
$4.747(S_0 \rightarrow S_{11})$	261	0.155/0.300	H-4->LUMO (13%), H-2->LUMO (13%), H-6->LUMO (8%),
			H-1->L+1 (13%),HOMO->L+3 (10%),HOMO->L+5 (21%), H-1->L+2 (5%)
NKX-2883			
$2.313(S_0 \rightarrow S_1)$	536	2.255/0.994	HOMO->LUMO (80%), H-1->LUMO (5%), HOMO->L+1 (9%)
$3.053(S_0 \rightarrow S_2)$	406	0.144/0.282	H-1->LUMO (32%), HOMO->L+1 (60%)
$3.976(S_0 \rightarrow S_5)$	312	0.105/0.215	H-2->LUMO (31%), H-2->L+1 (17%), H-1->L+1 (33%)
$4.715(S_0 \rightarrow S_{10})$	263	0.194/0.360	H-5->LUMO (13%), HOMO->L+3 (31%), HOMO->L+4 (18%),
			H-1->L+2 (9%), H-1->L+4 (5%)
$6.040(S_0 \rightarrow S_{29})$	205	0.337/0.540	H-2->L+2(40%),H-2->L+3(29%), H-2->L+1 (7%), HOMO->L+8 (5%)
NKX-2883/TiO ₂			
$2.230(S_0 \rightarrow S_1)$	556	2.627/0.998	HOMO->LUMO (74%), H-1->LUMO (8%), HOMO->L+3 (5%)

$2.951(S_0 \rightarrow S_2)$	420	0.103/0.211	H-1->LUMO (29%), HOMO->L+3 (17%), HOMO->L+5 (20%),
			HOMO->L+4 (5%), HOMO->L+7 (7%), HOMO->L+10 (7%)
$3.383(S_0 \rightarrow S_3)$	366	0.174/0.330	H-1->LUMO (51%), HOMO->LUMO (18%), HOMO->L+3 (6%),
			HOMO->L+5 (6%)
$3.897(S_0 \rightarrow S_8)$	318	0.102/0.209	H-3->LUMO (11%), H-1->L+3 (11%), H-1->L+5 (21%),
			HOMO->L+5 (10%), H-1->L+7 (6%), HOMO->L+3 (6%)
NKX-2883-P1			
$2.356(S_0 \rightarrow S_1)$	526	2.001/0.990	HOMO->LUMO(76%),HOMO->L+1(16%),H-1->LUMO (5%
$3.212(S_0 \rightarrow S_2)$	386	0.203/0.373	H-1->LUMO (16%), HOMO->L+1(68%), HOMO->LUMO (7%)
$3.629(S_0 \rightarrow S_3)$	342	0.206/0.378	H-1->LUMO (68%), HOMO->LUMO (12%), HOMO->L+1(9%)
$4.156(S_0 \rightarrow S_6)$	298	0.295/0.493	H-3->LUMO (21%), H-1->L+1(46%), HOMO->L+2(16%)
NKX-2883-P1/TiO	2		
$2.322(S_0 \rightarrow S_1)$	534	2.237/0.994	HOMO->LUMO (70%), H-1->LUMO (6%), HOMO->L+3(6%),
			HOMO->L+5(8%)
$3.131(S_0 \rightarrow S_2)$	396	0.226/0.406	H-1->LUMO (14%), HOMO->LUMO (10%), HOMO->L+3(15%),
			HOMO->L+5(26%), HOMO->L+2(5%), HOMO->L+7(6%),
			HOMO->L+10(7%)
$3.545(S_0 \rightarrow S_3)$	350	0.341/0.544	H-1->LUMO (64%), HOMO->LUMO (16%), H-3->LUMO (5%)
$4.077(S_0 \rightarrow S_{10})$	304	0.105/0.215	HOMO->L+5 (31%), HOMO->L+7 (25%),H-3->LUMO (6%),
			H-1->L+5 (8%)
4.101(S_0 → S_{11})	302	0.161/0.310	H-3->LUMO (11%), H-1->L+5(10%), HOMO->L+7(35%),
			H-1->L+3(7%), H-1->L+7(5%)
NKX-2883-P2			
$2.530(S_0 \rightarrow S_1)$	490	2.024/0.991	HOMO->LUMO (63%), HOMO->L+1 (30%)
$3.894(S_0 \rightarrow S_4)$	318	0.242/0.427	H-2->L+1(19%), H-1-> LUMO (53%),H-3->LUMO (5%), H-1->L+1 (7%),
			HOMO->LUMO (5%)
$3.933(S_0 \rightarrow S_5)$	315	0.376/0.579	H-2->LUMO (44%), H-2->L+1 (18%), H-1->LUMO (11%),
			H-3->LUMO (5%), HOMO->LUMO (6%)
$4.339(S_0 \rightarrow S_7)$	286	0.240/0.425	H-3->LUMO (21%), H-1->L+1 (25%), HOMO->L+3 (31%),
			HOMO->L+5 (9%)
NKX-2883-P2/TiO	2		
$2.514(S_0 \rightarrow S_1)$	493	2.218/0.994	HOMO->LUMO (56%), HOMO->L+3 (17%), HOMO->L+2 (9%),
			HOMO->L+5 (8%)
$3.819(S_0 \rightarrow S_4)$	325	0.793/0.839	H-3->LUMO (14%), H-1->LUMO (52%), HOMO->LUMO (12%),
			H-2->LUMO (7%)
NKX-2883-Q1			
$2.432(S_0 \rightarrow S_1)$	510	2.270/0.995	HOMO->LUMO (64%), HOMO->L+1 (27%)
$3.177(S_0 \rightarrow S_2)$	390	0.199/0.368	H-1->LUMO (24%), HOMO->LUMO (11%), HOMO->L+1 (53%)
$3.623(S_0 \rightarrow S_3)$	342	0.227/0.407	H-1->LUMO (54%), HOMO->LUMO (17%), HOMO->L+1 (11%),
			H-3->LUMO (5%)
$4.019(S_0 \rightarrow S_6)$	308	0.171/0.325	H-4->LUMO (24%),H-1->L+1(42%),H-2->LUMO (6%),
			HOMO->L+3 (9%)
$4.718(S_0 \rightarrow S_{12})$	262	0.220/0.397	H-1->L+3 (10%), HOMO->L+4 (24%), HOMO->L+5 (21%),

			H-5->LUMO (7%), H-3->L+1 (5%), HOMO->L+3 (8%)
$5.049(S_0 \rightarrow S_{15})$	246	0.295/0.493	H-3->L+2 (27%), HOMO->L+5 (17%), HOMO->L+4 (6%)
$5.388(S_0 \rightarrow S_{22})$	230	0.133/0.264	H-5->L+1(33%), H-1->L+2(12%), H-5->LUMO (6%), H-4->L+1 (6%),
			H-4->L+2 (6%), H-3->L+2 (8%
NKX-2883-Q1/TiO ₂	2		
$2.4194(S_0 \rightarrow S_1)$	512	2.510/0.997	HOMO->LUMO (56%), HOMO->L+3 (11%), HOMO->L+5 (11%),
			H-1->LUMO (5%)
$3.1208(S_0 \rightarrow S_2)$	397	0.270/0.463	H-1->LUMO (23%), HOMO->LUMO (15%), HOMO->L+3 (12%),
			HOMO->L+5(19%), HOMO->L+4 (6%)
$3.564(S_0 \rightarrow S_3)$	348	0.364/0.567	H-1->LUMO (47%), HOMO->LUMO (23%), H-3->LUMO (7%)
$3.989(S_0 \rightarrow S_9)$	311	0.124/0.248	H-4->LUMO (13%), H-2->LUMO (15%), H-1->L+5 (10%),
			H-2->L+3 (7%)), H-2->L+5 (9%), H-1->L+3 (7%)
NKX-2883-Q2			
$2.602(S_0 \rightarrow S_1)$	476	2.117/0.992	HOMO->LUMO (37%), HOMO->L+1 (55%)
$3.359(S_0 \rightarrow S_2)$	369	0.607/0.753	H-1->LUMO (44%), HOMO->LUMO (18%), HOMO->L+1 (22%)
$3.723(S_0 \rightarrow S_3)$	333	0.226/0.406	H-3->LUMO (10%), H-1->LUMO (27%), HOMO->LUMO (36%),
			HOMO->L+1 (13%)
$4.077(S_0 \rightarrow S_7)$	304	0.102/0.209	H-5->LUMO (14%), H-4->LUMO (29%), H-1->L+1 (22%),
			H-4->L+2 (5%)
$4.554(S_0 \rightarrow S_{11})$	272	0.149/0.290	H-1->L+2(18%), HOMO->L+5(23%),H-5->L+1 (5%),, H-3->L+1 (7%),
			H-2->L+1 (8%),, HOMO->L+4 (5%)
$4.813(S_0 \rightarrow S_{14})$	258	0.201/0.370	H-1->L+2 (12%), HOMO->L+5 (11%), HOMO->L+6 (25%),
			H-3->L+1 (5%), HOMO->L+3 (7%)
$4.898(S_0 \rightarrow S_{16})$	253	0.175/0.332	H-4->LUMO (15%), H-4->L+1 (10%), HOMO->L+4 (27%),
			HOMO->L+6 (10%),H-3->LUMO (7%, H-1->L+4 (8%)
$5.069(S_0 \rightarrow S_{18})$	245	0.448/0.644	H-3->L+2(10%), HOMO->L+3(10%), H-6->L+1 (6%), H-5->LUMO (6%),
			H-5->L+1 (8%), H-5->L+2 (5%), H-4->L+2 (5%), H-3->L+3 (7%)
$5.419(S_0 \rightarrow S_{25})$	229	0.253/0.442	H-3->L+1 (14%), H-6->LUMO (9%), H-5->L+2 (5%), H-5->L+3 (7%),
			H-4->L+3 (6%), H-1->L+2 (5%), HOMO->L+4 (5%)
$5.577(S_0 \rightarrow S_{29})$	222	0.256/0.445	H-4->L+2 (21%), H-6->L+1 (5%), H-4->L+3 (5%), H-1->L+3 (5%)
NKX-2883-Q2/TiO2	2		
$2.592(S_0 \rightarrow S_1)$	478	2.332/0.995	HOMO->LUMO (27%), HOMO->L+2 (20%), HOMO->L+3 (32%),
			HOMO->L+5 (6%)
$3.270(S_0 \rightarrow S_2)$	379	0.794/0.839	H-1->LUMO (44%), HOMO->LUMO (20%), HOMO->L+3 (9%)
$3.637(S_0 \rightarrow S_3)$	341	0.331/0.533	H-1->LUMO (25%), HOMO->LUMO (46%), H-3->LUMO (6%)
$4.045(S_0 \rightarrow S_8)$	307	0.113/0.229	H-4->LUMO(26%), H-1->L+3(11%), H-5->LUMO (9%), H-1->L+2 (6%)
$4.531(S_0 \rightarrow S_{26})$	274	0.130/0.259	H-1->L+25 (14%), HOMO->L+56 (12%), HOMO->L+12 (5%)

ΔG(aq)^a ΔG^{0b} **E**_{redox} ^c ΔE_{ver}^{d} ∆G_{reg}^g **f**h LHE $E_{\rm ox(dye)}^{e}$ scheme E_{ox(dye*)}^f 2.704 -0.700 -1.704 0.983/0.514 NKX-2311 10.501 -2.917 6.061 -2.004 1.774/ 0.314 NKX-2677 9.401 -2.083 4.961 2.439 -1.754 -0.685 -1.454 1.851/ 0.320 0.986/0.521 NKX-2677-P1 9.720 -2.303 5.278 2.537 -1.804 -1.504 2.067/ 0.557 0.991/0.723 -0.733 NKX-2677-P2 10.468 -2.779 6.028 2.81 -1.945 -0.864 -1.645 1.789/ 0.678 0.984/0.790 NKX-2700 9.078 2.347/ 0.325 -1.847 4.638 2.351 -1.651 -0.700 -1.351 0.996/0.527 NKX-2700-P1 2.403 -0.679 2.194/ 0.373 0.994/0.576 9.464 -2.182 5.024 -1.724 -1.424 NKX-2700-P2 10.093 -2.464 5.653 2.750 -1.918 -0.831 2.178/ 0.578 0.993/0.736 -1.618 NKX-2883 2.255/ 0.337 0.994/0.540 9.265 -2.072 4.825 2.313 -1.860 -0.454 -1.560 NKX-2883-P1 9.589 -2.353 5.149 2.356 -1.876 -0.480 -1.576 2.001/0.295 0.990/0.493 NKX-2883-P2 2.024/0.376 10.267 -2.856 5.827 2.530 -2.006 -0.524 -1.706 0.991/0.579 NKX-2883-Q1 9.385 -2.073 4.945 2.432 -1.888 -0.544 -1.588 2.270/ 0.295 0.995/0.493 NKX-2883-Q2 9.627 -2.145 5.187 2.602 -1.956 -0.646 -1.656 2.117/ 0.607 0.992/0.753

Table 5S Estimated $\Delta G_{(aq)}$, ΔG^0 , ΔE_{ver} , $E_{ox(dye)}$, ΔG_{reg} , f and *LHE* for all coumarin sensitizers. All calculation is obtained by M062X functional with b-31g(d,p) basis set

^aCalculated Gibbs free energy change ($\Delta G_{(aq)}$, in V) due to the oxidation of the dyes in aqueous solutions. ^bThe driving force(ΔG^{0} , in V) electron injection related to the electronic transition in B1 band. ^cRedox potential (E_{redox} vs NHE, in V). ^dThe vertical excitation energy (ΔE_{ver} , eV) corresponding to the maximum wavelength of spectral absorption. ^eThe oxidized potential (vs. NHE, $E_{ox(dye)}$, in eV) of ground state. ^tThe oxidized potential of the first excited state ($E_{ox(dye^{\gamma})}$ following unrelax path for dyes.⁹The regeneration energy(ΔG_{reg} , in V). ^hThe oscillation strength of the two major absorption bands (B1 and B2 bands). ⁱThe light harvest efficiency (*LHE*) corresponding to B1/B2 bands.

NKX-2677(Exp) Molecule NKX-2311(Exp) NKX-2700(Exp) NKX-2883(Exp) 2.704(2.460)^a 2.439(2.427)^a 2.351(2.362)^a 2.313(2.246)^a λ_{\max} f 1.774 1.851 2.347 2.255 0.983 0.986 0.996 0.994 φ_{LHE}

Table 6S Maximum absorption wavelength (λ_{max}) and corresponding oscillation strength (*f*) and light harvesting efficiency (φ_{LHE}) for NKX-2311, NKX-2677, NKX-2700, and NKX-2883

a Experimental value from Ref. 12, 22, 23, 24

functional with b-31g(d,p) basis set scheme $\Delta G(aq)^a \Delta G^{0b} = E_{redox}^c \Delta E_{ver}^d = E_{ox(dve)}^e = E_{ox(dve)}^f \Delta G_{red}^g = f^h LHE^i$

Table 7S Estimated $\Delta G_{(aq)}$, ΔG^0 , ΔE_{ver} , $E_{ox(dye)}$, ΔG_{reg} , f and LHE for all coumarin sensitizers. All calculation is obtained by B3LYP

scheme	Δ <i>G</i> (aq) "	ΔG ^{***}	Eredox	ΔE _{ver} "	E _{ox(dye)} °	E _{ox(dye*)}	∆G _{reg} ^s	ť	LHE
NKX-2311	6.324	-1.024	1.884	2.468	-0.867	-1.601	-0.567	1.553/ 0.504	0.972/0.687
NKX-2677	5.645	-1.181	1.205	1.946	-0.615	-1.331	-0.315	1.272/ 0.701	0.947/0.801
NKX-2677-P1	5.900	-0.951	1.460	1.971	-0.705	-1.266	-0.405	1.315/ 0.874	0.952/0.866
NKX-2677-P2	6.439	-0.410	1.999	1.969	-0.851	-1.118	-0.551	0.775/ 0.619	0.832/0.759
NKX-2700	5.453	-1.292	1.013	1.864	-0.527	-1.338	-0.227	1.650/ 0.831	0.978/0.853
NKX-2700-P1	5.708	-0.980	1.268	1.808	-0.619	-1.190	-0.319	1.410/ 0.992	0.961/0.898
NKX-2700-P2	6.255	-0.548	1.815	1.923	-0.813	-1.110	-0.513	0.902/ 1.399	0.875/0.960
NKX-2883	5.668	-1.121	1.228	1.910	-0.721	-1.188	-0.421	1.725/ 0.491	0.981/0.677
NKX-2883-P1	5.930	-0.831	1.490	1.881	-0.798	-1.084	-0.498	1.382/0.664	0.959/0.783
NKX-2883-P2	6.387	-0.469	1.947	1.976	-0.942	-1.034	-0.642	1.102/0.909	0.921/0.877
NKX-2883-Q1	5.780	-1.019	1.340	1.919	-0.740	-1.178	-0.440	1.424/ 0.834	0.962/0.854
NKX-2883-Q2	6.067	-0.899	1.627	2.085	-0.840	-1.245	-0.540	0.953/ 1.126	0.889/0.925

^aCalculated Gibbs free energy change ($\Delta G_{(aq)}$, in V) due to the oxidation of the dyes in aqueous solutions. ^bThe driving force(ΔG^0 , in V) electron injection related to the electronic transition in B1 band. ^cRedox potential (E_{redox} vs NHE, in V). ^dThe vertical excitation energy (ΔE_{ver} , eV) corresponding to the maximum wavelength of spectral absorption. ^eThe oxidized potential (vs. NHE, $E_{ox(dye)}$, in eV) of ground state. ^tThe oxidized potential of the first excited state ($E_{ox(dye')}$) following unrelax path for dyes. ^gThe regeneration energy(ΔG_{reg} , in V). ^hThe oscillation strength of the two major absorption bands (B1 and B2 bands). ⁱThe light harvest efficiency (*LHE*) corresponding to B1/B2 bands.

Table 8S Electronic transition data obtained by TD-B3LYP/6-31g(d,p) level for all free dyes and dye-titania complexes in ethanol solution with B3LYP/6-31g(d,p) geometries

Transition energy(eV)	Wavelength/nm	Oscillator strength/	Wavelength
		Light harvest efficiency	
NKX-2311			
$2.468(S_0 \rightarrow S_1)$	502	1.553/0.972	HOMO->LUMO (100%)
$3.467(S_0 \rightarrow S_3)$	358	0.138/0.272	H-2->LUMO (31%), HOMO->L+1 (65%)
$3.798(S_0 \rightarrow S_4)$	326	0.173/0.329	H-2->LUMO (27%), H-1->LUMO (43%), HOMO->L+1 (23%)
$5.963(S_0 \rightarrow S_{27})$	208	0.504/0.687	H-5->L+1 (14%), H-2->L+2 (52%), H-1->L+2 (15%), HOMO->L+6 (6%)
$6.223(S_0 \rightarrow S_{30})$	199	0.142/0.279	H-14->LUMO (11%), H-2->L+3 (58%), H-5->L+1 (5%), H-2->L+2 (5%)
NKX-2311/TiO ₂			
$2.146(S_0 \rightarrow S_1)$	578	1.470	HOMO->LUMO (96%)
2.316(<i>S</i> ₀ → <i>S</i> ₄)	535	0.123	HOMO->L+3 (95%)
NKX-2677			
$1.946(S_0 \rightarrow S_1)$	637	1.272/0.947	HOMO->LUMO (100%)
$2.725(S_0 \rightarrow S_2)$	455	0.701/0.801	H-1->LUMO (58%), HOMO->L+1 (42%)
$3.026(S_0 \rightarrow S_3)$	409	0.117/0.236	H-1->LUMO (42%), HOMO->L+1 (56%)
NKX-2677-TiO ₂			
$1.757(S_0 \rightarrow S_1)$	705	1.409/0.961	HOMO->LUMO (100%)
$2.574(S_0 \rightarrow S_{14})$	482	0.174/0.330	H-1->LUMO (15%), HOMO->L+13 (79%)
$2.582(S_0 \rightarrow S_{15})$	480	0.547/0.716	H-1->LUMO (63%), HOMO->L+13 (20%), HOMO->L+23 (6%)
NKX-2677-P1			
$1.971(S_0 \rightarrow S_1)$	629	1.315/0.952	HOMO->LUMO (100%)
$2.806(S_0 \rightarrow S_2)$	442	0.874/0.866	H-1->LUMO (34%), HOMO->L+1 (65%)
$4.115(S_0 \rightarrow S_{11})$	301	0.141/0.277	H-5->LUMO (72%), H-1->L+1 (14%)
$4.910(S_0 \rightarrow S_{23})$	253	0.123/0.247	H-5->L+1 (12%), HOMO->L+5 (60%), H-1->L+3 (5%)
NKX-2677-P2			
$1.969(S_0 \rightarrow S_1)$	630	0.775/0.832	HOMO->LUMO (100%)
$2.916(S_0 \rightarrow S_2)$	425	0.320/0.521	H-2->LUMO (51%), H-1->LUMO (17%), HOMO->L+1 (24%)
$2.932(S_0 \rightarrow S_3)$	423	0.619/0.760	H-2->LUMO (36%), HOMO->L+1 (49%),H-3->LUMO (6%), H-1->LUMO (5%)
$2.025(S_0 \rightarrow S_4)$	410	0.116/0.234	H-1->LUMO (75%), HOMO->L+1 (15%)
$3.321(S_0 \rightarrow S_6)$	373	0.193/0.359	H-3->LUMO (20%), HOMO->L+2 (76%)
$3.420(S_0 \rightarrow S_7)$	362	0.205/0.376	H-3->LUMO (68%), HOMO->L+2 (21%),HOMO->L+1 (9%)
$4.052(S_0 \rightarrow S_{13})$	306	0.176/0.333	H-6->LUMO (17%), H-5->LUMO (68%),H-3->L+1 (5%)
NKX-2700			
$1.864(S_0 \rightarrow S_1)$	665	1.650/0.978	HOMO->LUMO (100%)
$2.571(S_0 \rightarrow S_2)$	482	0.831/0.852	H-1->LUMO (65%), HOMO->L+1 (34%)
$2.862(S_0 \rightarrow S_3)$	433	0.103/0.211	H-1->LUMO (34%), HOMO->L+1 (63%)
NKX-2700/TiO2			
$1.696(S_0 \rightarrow S_1)$	731	1.783/0.984	HOMO->LUMO (100%)
$2.332(S_0 \rightarrow S_{10})$	532	0.116/0.234	HOMO->L+8 (12%), HOMO->L+9 (80%)
$2.424(S_0 \rightarrow S_{12})$	512	0.629/0.765	H-1->LUMO (64%), HOMO->L+11 (22%)
$2.\overline{424(S_0 \rightarrow S_{13})}$	511	0.155/0.300	H-1->LUMO (17%), HOMO->L+11 (74%)

NKX-2700-P1			
$1.808(S_0 \rightarrow S_1)$	686	1.410/0.961	HOMO->LUMO (100%)
$2.619(S_0 \rightarrow S_2)$	473	0.992/0.898	H-1->LUMO (56%), HOMO->L+1 (43%)
$3.577(S_0 \rightarrow S_8)$	347	0.115/0.233	H-3->LUMO (41%), H-1->L+1 (52%)
NKX-2700-P2			
1.923(S ₀ -S ₁)	645	0.902/0.875	HOMO->LUMO (100%)
2.783(S ₀ -S ₂)	445	1.399/0.960	H-1->LUMO (27%), HOMO->L+1 (68%)
NKX-2883			
$1.909(S_0 \rightarrow S_1)$	649.5	1.725/0.981	HOMO->LUMO (100%)
$2.478(S_0 \rightarrow S_2)$	500	0.491/0.677	H-1->LUMO (27%), HOMO->L+1 (72%)
$2.809(S_0 \rightarrow S_3)$	441	0.149/0.290	H-1->LUMO (73%), HOMO->L+1 (27%)
$3.679(S_0 \rightarrow S_7)$	337	0.100/0.206	H-4->LUMO (14%), H-3->LUMO (37%), HOMO->L+2 (32%), H-1->L+1 (8%)
$4.039(S_0 \rightarrow S_{11})$	307	0.143/0.280	H-3->L+1 (29%), HOMO->L+3 (56%), H-5->LUMO (8%)
NKX-2883/TiO ₂			
1.761	704	1.802/0.984	HOMO->LUMO (99%)
2.368	523	0.344/0.547	H-1->LUMO (12%), HOMO->L+7 (50%), HOMO->L+8 (30%)
2.389	519	0.244/0.430	H-1->LUMO (11%), HOMO->L+7 (47%), HOMO->L+8 (34%)
NKX-2883-P1			
$1.881(S_0 \rightarrow S_1)$	656	1.382/0.959	HOMO->LUMO (100%)
$2.522(S_0 \rightarrow S_2)$	491	0.664/0.783	H-1->LUMO (16%), HOMO->L+1 (84%)
$2.903(S_0 \rightarrow S_3)$	427	0.233/0.415	H-1->LUMO (82%), HOMO->L+1 (16%)
$3.861(S_0 \rightarrow S_{11})$	321	0.212/0.386	H-5->LUMO (34%), H-3->LUMO (38%), H-1->L+1 (12%), HOMO->L+3 (8%)
$4.088(S_0 \rightarrow S_{12})$	301	0.179/0.338	HOMO->L+4 (89%)
NKX-2883-P1/TiO ₂			
$1.772(S_0 \rightarrow S_1)$	670	1.404/0.961	HOMO->LUMO (99%)
2.419(<i>S</i> ₀ → <i>S</i> ₈)	512	0.293/0.491	HOMO->L+7 (65%), HOMO->L+8 (24%), H-1->LUMO (5%)
$2.448(S_0 \rightarrow S_9)$	506	0.264/0.455	HOMO->L+7 (33%), HOMO->L+8 (56%), H-1->LUMO (6%)
$2.580(S_0 \rightarrow S_{11})$	481	0.149/0.290	H-1->LUMO (12%), HOMO->L+8 (11%), HOMO->L+10(32%),
			HOMO->L+11(15%), HOMO->L+12 (25%)
$2.8065(S_0 \rightarrow S_{16})$	442	0.212/0.386	H-1->LUMO (59%), HOMO->L+14 (17%), HOMO->L+12 (9%),
			HOMO->L+13 (6%)
NKX-2883-P2			
$1.976(S_0 \rightarrow S_1)$	628	1.102/0.921	HOMO->LUMO (100%)
$2.596(S_0 \rightarrow S_2)$	478	0.909/0.877	HOMO->L+1 (94%)
$3.201(S_0 \rightarrow S_5)$	387	0.365/0.568	H-2->LUMO (74%), H-1->LUMO (19%)
$3.753(S_0 \rightarrow S_{10})$	330	0.146/0.286	H-4->LUMO (50%), H-2->L+1 (35%), H-1->L+1 (10%)
$3.936(S_0 \rightarrow S_{13})$	315	0.166/0.318	H-4->LUMO (40%), H-2->L+1 (21%), H-1->L+1 (15%), HOMO->L+3 (13%),
			HOMO->L+4 (6%)
$4.209(S_0 \rightarrow S_{16})$	295	0.116/0.234	HOMO->L+5 (90%)
NKX-2883-P2/TiO ₂			
$1.8773(S_0 \rightarrow S_1)$	660	1.060/0.913	HOMO->LUMO (99%)
$2.4934(S_0 \rightarrow S_6)$	497	0.283/0.479	HOMO->L+5 (82%), HOMO->L+6 (8%)
$2.5233(S_0 \rightarrow S_7)$	491	0.403/0.605	HOMO->L+5 (17%), HOMO->L+6 (60%), HOMO->L+7 (11%),

			HOMO->L+8 (8%)		
2.5640(<i>S</i> ₀ → <i>S</i> ₈)	484	0.146/0.286	HOMO->L+6 (27%), HOMO->L+7 (60%), HOMO->L+8 (10%)		
2.5975(S ₀ →S ₉)	477	0.153/0.297	HOMO->L+7 (23%), HOMO->L+8 (71%)		
3.1016(<i>S</i> ₀ → <i>S</i> ₂₂)	340	0.397/0.599	H-2->LUMO (80%), H-1->LUMO (7%)		
NKX-2883-Q1					
$1.919(S_0 \rightarrow S_1)$	646	1.424/0.962	HOMO->LUMO (99%)		
$2.453(S_0 \rightarrow S_2)$	505	0.834/0.853	HOMO->L+1 (90%), H-1->LUMO (9%)		
$2.823(S_0 \rightarrow S_3)$	439	0.217/0.393	H-1->LUMO (89%), HOMO->L+1 (9%)		
$3.663(S_0 \rightarrow S_{11})$	338	0.115/0.232	H-4->LUMO (43%), H-3->LUMO (17%), HOMO->L+3 (18%), H-2->L+1 (5%),		
			H-1->L+1 (7%)		
$4.060(S_0 \rightarrow S_{15})$	305	0.132/0.262	H-1->L+2 (38%), HOMO->L+4 (53%)		
$4.593(S_0 \rightarrow S_{24})$	270	0.251/0.439	H-3->L+2 (77%), H-2->L+2 (12%)		
NKX-2883-Q1/TiO ₂					
$1.833(S_0 \rightarrow S_1)$	676.5	1.361/0.956	HOMO->LUMO (98%)		
$2.371(S_0 \rightarrow S_8)$	523	0.628/0.764	HOMO->L+7 (39%), HOMO->L+8 (49%)		
$2.402(S_0 \rightarrow S_9)$	516	0.166/0.318	HOMO->L+7 (60%), HOMO->L+8 (36%)		
$2.736(S_0 \rightarrow S_{16})$	453	0.136/0.269	H-1->LUMO (51%), HOMO->L+14 (42%)		
NKX-2883-Q2					
$2.085(S_0 \rightarrow S_1)$	595	0.953/0.891	HOMO->LUMO (98%)		
$2.461(S_0 \rightarrow S_2)$	504	1.126/0.925	HOMO->L+1 (95%)		
$2.891(S_0 \rightarrow S_3)$	429	0.413/0.614	H-1->LUMO (94%)		
$3.357(S_0 \rightarrow S_8)$	369	0.129/0.257	H-4->LUMO (63%), H-3->LUMO (24%)		
$3.625(S_0 \rightarrow S_{12})$	342	0.230/0.411	H-5->LUMO (57%), H-3->LUMO (23%)H-4->LUMO (5%)), HOMO->L+6 (6%)		
$4.504(S_0 \rightarrow S_{28})$	275	0.192/0.357	H-8->L+1 (15%), H-4->L+2 (35%), H-2->L+2 (13%), HOMO->L+6 (10%),		
			H-3->L+2 (9%), H-1->L+4 (8%)		
NKX-2883-Q2/TiO ₂					
$1.983(S_0 \rightarrow S_1)$	625	0.797/0.840	HOMO->LUMO (97%)		
$2.395(S_0 \rightarrow S_6)$	518	0.492/0.678	HOMO->L+5 (69%), HOMO->L+8 (18%), HOMO->L+7 (6%)		
$2.421(S_0 \rightarrow S_7)$	512	0.664/0.783	HOMO->L+5 (30%), HOMO->L+6 (12%), HOMO->L+7 (11%),		
			HOMO->L+8 (39%)		
$2.761(S_0 \rightarrow S_{14})$	449	0.434/0.631	H-1->LUMO (83%), HOMO->L+13 (5%)		

Transition energy(eV)	Wavelength/nm	Oscillator strength/	Wavelength
		Light harvest efficiency	
NKX-2311			
$2.528(S_0 \rightarrow S_1)$	490	1.626/0.976	HOMO->LUMO (100%)
$3.623(S_0 \rightarrow S_3)$	342	0.111/0.226	H-2->LUMO (26%), HOMO->L+1 (70%)
$3.893(S_0 \rightarrow S_4)$	319	0.177/0.335	H-2->LUMO (29%), H-1->LUMO (46%), HOMO->L+1 (19%)
$6.032(S_0 \rightarrow S_{24})$	205	0.221/0.399	H-4->L+1 (34%), H-2->L+2 (36%), H-1->L+3 (11%), H-2->L+3 (7%),
			H-1->L+2 (5%)
$6.126(S_0 \rightarrow S_{27})$	202	0.345/0.548	H-4->L+1 (37%), H-2->L+2 (35%), HOMO->L+6 (12%), H-1->L+2 (6%)
$6.266(S_0 \rightarrow S_{28})$	198	0.125/0.250	H-4->L+1 (15%), H-1->L+3 (69%)
$6.405(S_0 \rightarrow S_{30})$	194	0.118/0.238	H-2->L+3 (67%), H-15->LUMO (9%)
NKX-2311/TiO ₂			
$2.253(S_0 \rightarrow S_1)$	550	1.886/0.987	HOMO->LUMO (99%)
NKX-2677			
$2.047(S_0 \rightarrow S_1)$	606	1.407/0.966	HOMO->LUMO (99%)
$2.866(S_0 \rightarrow S_2)$	432	0.614/0.757	H-1->LUMO (56%), HOMO->L+1 (42%)
3.110(<i>S</i> ₀ → <i>S</i> ₃)	399	0.130/0.259	H-1->LUMO (43%), HOMO->L+1 (56%)
NKX-2677-TiO ₂			
$1.886(S_0 \rightarrow S_1)$	657	1.634/0.977	HOMO->LUMO (98%)
$2.705(S_0 \rightarrow S_9)$	458	0.469/0.660	H-1->LUMO (29%), HOMO->L+8 (45%), HOMO->L+7 (7%)
$2.768(S_0 \rightarrow S_{11})$	448	0.270/0.463	H-1->LUMO (49%), HOMO->L+8 (40%)
NKX-2677-P1			
$2.087(S_0 \rightarrow S_1)$	594	1.472/0.966	HOMO->LUMO (99%)
$2.942(S_0 \rightarrow S_2)$	421	0.742/0.819	H-1->LUMO (25%), HOMO->L+1 (73%)
$4.242(S_0 \rightarrow S_{11})$	292	0.141/0.277	H-5->LUMO (79%), H-1->L+1 (10%)
$5.069(S_0 \rightarrow S_{22})$	245	0.105/0.215	HOMO->L+5 (75%), H-5->L+1 (6%)
$5.341(S_0 \rightarrow S_{27})$	232	0.106/0.217	H-2->L+3 (83%),H-3->L+2 (6%)
NKX-2677-P2			
$2.138(S_0 \rightarrow S_1)$	580	0.911/0.877	HOMO->LUMO (99%)
$3.052(S_0 \rightarrow S_2)$	406	0.933/0.883	HOMO->L+1 (84%),H-3->LUMO (6%), H-1->LUMO (6%)
$3.521(S_0 \rightarrow S_6)$	352	0.421/0.621	H-3->LUMO (61%), HOMO->L+2 (27%), HOMO->L+1 (5%)
$4.222(S_0 \rightarrow S_{12})$	294	0.108/0.220	H-7->LUMO (11%), H-6->LUMO (14%), H-5->LUMO (60%)
NKX-2700			
$1.962(S_0 \rightarrow S_1)$	632	1.825/0.985	HOMO->LUMO (99%)
$2.714(S_0 \rightarrow S_2)$	457	0.710/0.805	H-1->LUMO (66%), HOMO->L+1 (32%)
$2.955(S_0 \rightarrow S_3)$	420	0.122/0.225	H-1->LUMO (33%), HOMO->L+1 (65%)
NKX-2700/TiO2			
$1.818(S_0 \rightarrow S_1)$	682	2.062/0.991	HOMO->LUMO (98%)
$2.551(S_0 \rightarrow S_7)$	486	0.110/0.224	HOMO->L+5 (11%), HOMO->L+6 (73%), H-1->LUMO (5%)
$2.578(S_0 \rightarrow S_8)$	481	0.621/0.761	H-1->LUMO (60%), HOMO->L+6 (15%), HOMO->L+7 (6%),
			HOMO->L+8 (5%), HOMO->L+16 (7%)

Table 9S Electronic transition data obtained by TD-PBE0/6-31g(d,p) level for all free dyes and dye-titania complexes in ethanolsolution with B3LYP/6-31g(d,p) geometries

NKX-2700-P1			
$1.925(S_0 \rightarrow S_1)$	644	1.575/0.973	HOMO->LUMO (99%)
$2.765(S_0 \rightarrow S_2)$	448	0.891/0.870	H-1->LUMO (50%), HOMO->L+1 (47%)
$3.000(S_0 \rightarrow S_3)$	413	0.111/0.226	H-1->LUMO (48%), HOMO->L+1 (51%)
NKX-2700-P2			
$2.089(S_0 \rightarrow S_1)$	593	1.080/0.917	HOMO->LUMO (98%)
$2.918(S_0 \rightarrow S_2)$	425	1.305/0.950	H-1->LUMO (23%), HOMO->L+1 (70%)
3.201(S ₀ →S ₄)	387	0.185/0.347	H-1->LUMO (65%), HOMO->L+1 (24%)H-3->LUMO (5%)
$4.913(S_0 \rightarrow S_{25})$	252	0.129/0.257	H-5->L+1 (19%), H-2->L+2 (14%), H-2->L+3 (13%), H-1->L+3 (20%),
			HOMO->L+6 (12%), H-4->L+1 (5%)
NKX-2883			
$1.998(S_0 \rightarrow S_1)$	620	1.897/0.987	HOMO->LUMO (98%)
$2.623(S_0 \rightarrow S_2)$	472	0.361/0.564	H-1->LUMO (19%), HOMO->L+1 (79%)
$2.893(S_0 \rightarrow S_3)$	429	0.175/0.332	H-1->LUMO (80%), HOMO->L+1 (20%)
$3.796(S_0 \rightarrow S_7)$	327	0.108/0.220	H-3->LUMO (42%), HOMO->L+2 (36%), H-4->LUMO (9%), H-1->L+1 (6%)
$4.224(S_0 \rightarrow S_{11})$	294	0.154/0.299	H-3->L+1 (14%), HOMO->L+3 (68%), H-5->LUMO (5%), H-1->L+2 (5%)
NKX-2883/TiO ₂			
$1.8770(S_0 \rightarrow S_1)$	661	2.080/0.992	HOMO->LUMO (97%)
$2.4947(S_0 \rightarrow S_3)$	497	0.390/0.593	H-1->LUMO (10%), HOMO->L+2 (33%), HOMO->L+3(24%),
			HOMO->L+7(14%), HOMO->L+5 (8%), HOMO->L+6 (5%)
NKX-2883-P1			
$1.990(S_0 \rightarrow S_1)$	623	1.568/0.973	HOMO->LUMO (98%)
$2.654(S_0 \rightarrow S_2)$	467	0.501/0.684	H-1->LUMO (10%), HOMO->L+1 (88%)
$3.030(S_0 \rightarrow S_3)$	409	0.284/0.480	H-1->LUMO (88%), HOMO->L+1 (11%)
$4.004(S_0 \rightarrow S_{11})$	310	0.254/0.443	H-5->LUMO (43%), H-3->LUMO (38%)H-1->L+1 (9%), HOMO->L+3 (6%)
$4.263(S_0 \rightarrow S_{13})$	291	0.151/0.294	HOMO->L+4 (86%)
NKX-2883-P1/TiO ₂			
$1.907(S_0 \rightarrow S_1)$	650	1.657/0.978	HOMO->LUMO (97%)
$2.543(S_0 \rightarrow S_3)$	488	0.477/0.667	HOMO->L+2 (32%), HOMO->L+3 (20%), HOMO->L+5 (14%),
			HOMO->L+7 (14%), H-1->LUMO (6%), HOMO->L+6 (8%)
$2.639(S_0 \rightarrow S_5)$	470	0.108/0.220	HOMO->L+3 (51%), HOMO->L+5 (15%), HOMO->L+4 (8%),
			HOMO->L+6 (6%), HOMO->L+7 (9%)
$2.907(S_0 \rightarrow S_{10})$	426.5	0.230/0.411	H-1->LUMO (53%), HOMO->L+7 (12%) HOMO->L+10 (15%),
			HOMO->L+8 (7%), HOMO->L+11(7%)
$2.973(S_0 \rightarrow S_{12})$	417	0.130/0.259	H-1->LUMO (26%), HOMO->L+10 (65%), HOMO->L+11 (5%)
NKX-2883-P2			
$2.122(S_0 \rightarrow S_1)$	584	1.371/0.957	HOMO->LUMO (98%)
$2.711(S_0 \rightarrow S_2)$	457	0.653/0.778	HOMO->L+1 (94%)
3.360(S ₀ →S ₅)	369	0.468/0.660	H-2->LUMO (71%), H-1->LUMO (20%)
$4.017(S_0 \rightarrow S_{11})$	309	0.160/0.308	H-4->LUMO (34%), H-2->L+1 (11%), HOMO->L+4 (34%),H-1->L+1 (9%),
			HOMO->L+3 (5%)
$4.386(S_0 \rightarrow S_{17})$	283	0.106/0.308	HOMO->L+5 (84%), HOMO->L+6 (8%)
NKX-2883-P2/TiO ₂			

$2.049(S_0 \rightarrow S_1)$	605	1.367/0.957	HOMO->LUMO (97%)
$2.638(S_0 \rightarrow S_2)$	470	0.682/0.792	HOMO->L+1 (18%), HOMO->L+2 (18%), HOMO->L+4 (16%),
			HOMO->L+5(32%), HOMO->L+3(6%)
$2.649(S_0 \rightarrow S_3)$	468	0.131/0.260	HOMO->L+1 (81%), HOMO->L+2 (6%), HOMO->L+5 (6%)
$3.279(S_0 \rightarrow S_{16})$	378	0.426/0.625	H-2->LUMO (69%), HOMO->L+13 (15%)
NKX-2883-Q1			
$2.042(S_0 \rightarrow S_1)$	607	1.695/0.980	HOMO->LUMO (96%)
$2.581(S_0 \rightarrow S_2)$	480	0.577/0.735	HOMO->L+1 (92%)
$2.961(S_0 \rightarrow S_3)$	418	0.293/0.491	H-1->LUMO (92%), HOMO->L+1(5%)
$3.785(S_0 \rightarrow S_{10})$	328	0.173/0.329	H-4->LUMO (57%), H-3->LUMO (16%), H-2->L+1(5%)), HOMO->L+3(6%)
$4.219(S_0 \rightarrow S_{14})$	294	0.156/0.302	HOMO->L+4 (71%), H-7->LUMO (9%), H-4->L+1 (6%), H-1->L+2 (5%)
$4.760(S_0 \rightarrow S_{24})$	260	0.309/0.509	H-3->L+2 (79%), H-2->L+2 (5%)
NKX-2883-Q1/TiO ₂			
$1.987(S_0 \rightarrow S_1)$	624	1.756/0.982	HOMO->LUMO (95%)
$2.500(S_0 \rightarrow S_3)$	496	0.552/0.719	HOMO->L+2 (21%), HOMO->L+3 (19%), HOMO->L+5 (16%),
			HOMO->L+6 (20%), HOMO->L+1 (7%), HOMO->L+7 (8%)
$2.876(S_0 \rightarrow S_{10})$	431	0.348/0.551	H-1->LUMO (72%), HOMO->L+9 (6%), HOMO->L+10 (7%)
NKX-2883-Q2			
$2.244(S_0 \rightarrow S_1)$	552	1.430/0.963	HOMO->LUMO (90%), HOMO->L+1 (8%)
$2.581(S_0 \rightarrow S_2)$	480	0.668/0.785	HOMO->L+1 (89%), HOMO->LUMO (9%)
$3.043(S_0 \rightarrow S_3)$	407	0.541/0.712	H-1->LUMO (93%)
$3.548(S_0 \rightarrow S_8)$	349.5	0.145/0.284	H-4->LUMO (48%), H-3->LUMO (27%), HOMO->L+2 (9%)
$3.758(S_0 \rightarrow S_{10})$	330	0.128/0.255	H-5->LUMO (27%), H-2->LUMO (33%), H-2->L+1 (21%), HOMO->L+3 (5%)
$4.069(S_0 \rightarrow S_{15})$	305	0.137/0.271	H-4->L+1 (29%), H-3->L+1 (40%), HOMO->L+4 (18%)
$4.263(S_0 \rightarrow S_{18})$	291	0.103/0.211	H-5->L+1 (18%), H-1->L+2 (13%), HOMO->L+5 (50%), HOMO->L+4 (5%)
$4.700(S_0 \rightarrow S_{28})$	264	0.273/0.467	H-4->L+2 (40%), H-3->L+2 (19%), H-2->L+2 (16%)
NKX-2883-Q2/TiO ₂			
$2.180(S_0 \rightarrow S_1)$	569	1.346/0.955	HOMO->LUMO (91%)
$2.524(S_0 \rightarrow S_2)$	491	0.953/0.889	HOMO->L+3(12%), HOMO->L+4(11%), HOMO->L+5(50%),
			HOMO->LUMO (8%), HOMO->L+2(6%), HOMO->L+6(5%)
$2.937(S_0 \rightarrow S_{10})$	422	0.716/0.808	H-1->LUMO (91%)
$3.491(S_0 \rightarrow S_{26})$	355	0.117/0.236	H-4->LUMO (36%), H-3->LUMO (17%), HOMO->L+19 (30%)

Molecule picture f L Ω Δe NKX-2311 1.553 4.514 1.034 0.425 NKX-2677 1.272 9.367 1.129 0.170 1.315 0.117 NKX-2677-P1 10.389 1.223 NKX-2677-P2 0.775 11.800 1.364 0.026 NKX-2700 1.650 1.101 0.200 10.301 11.515 NKX-2700-P1 1.410 1.211 0.104 NKX-2700-P2 0.902 13.075 1.357 0.028 NKX-2833 1.725 9.024 1.070 0.372 NKX-2883-P1 1.382 10.270 1.195 0.200 NKX-2883-P2 1.102 0.077 12.187 1.323 NKX-2883-Q1 1.424 12.587 1.208 0.118 NKX-2883-Q2 0.953 16.245 1.345 0.018

Table 10S Electron density difference plots of electronic transition $S_0 \rightarrow S_1$ for each coumarin dyes performed in ethanol solution using the B3LYP functional with 6-31G(d,p) basis set. *L* is the electron transfer distance (Å); Δe is the fraction of electron exchange ($|e^-|$), Ω is overlaps between the regions of density depletion and increment. (Isovalue: $4 \times 10^{-4} \text{ e au}^{-3}$)

Table 11S Electron density difference plots of electronic transition $S_0 \rightarrow S_1$ for each coumarin dyes performed in ethanol solution using the PBE0 functional with 6-31G(d,p) basis set. *L* is the electron transfer distance (Å); Δe is the fraction of electron exchange ($|e^-|$), Ω is overlaps between the regions of density depletion and increment. (Isovalue: 4×10^{-4} e au⁻³)

Molecule	picture	f	L (Ang)	Δe	Ω
NKX-2311	Sound.	1.626	4.549	1.036	0.422
NKX-2677	Signer .	1.407	9.503	1.136	0.151
NKX-2677-P1	Surverse.	1.472	10.42	1.220	0.108
NKX-2677-P2	S. Stratege	0.911	11.715	1.352	0.027
NKX-2700	Signas a	1.825	10.514	1.101	0.177
NKX-2700-P1	Story and a	1.575	11.579	1.211	0.094
NKX-2700-P2	Store Street	1.080	13.000	1.331	0.027
NKX-2833	and the second second	1.897	9.078	1.059	0.364
NKX-2883-P1	Store and a second	1.568	10.228	1.174	0.195
NKX-2883-P2	Story and an	1.371	12.026	1.291	0.085
NKX-2883-Q1	San	1.698	12.510	1.174	0.120
NKX-2883-Q2	Support sector	1.430	15.691	1.304	0.040

NKX-2311		
1 and a	<i>L</i> = 5.164 Ang	L=4.857 Ang
สัสดาส ตร์ -	Δe = 1.024	Δe=0.812
	Ω= 0.376	Ω= 0.427
	f=1.774	<i>f</i> =0.180
ر د ا		
هي د	L= 0.470 Ang	L=3.144 Ang
	Δε= 0.765	Δε=0.754
	Ω= 0.880	Ω= 0.727
	<i>f</i> =0.110	<i>f</i> =0.147
ن د ا		
	L = 1.062 Ang	L=4.041Ang
	Δε=0.514	Δ <i>e</i> =0.445
Some a	Ω= 0.877	🧯 Ω= 0.599
2.3.	f=0.314	<i>f</i> =0.101
ini 🥥	<i>L</i> = 8.667 Ang	<i>L</i> =1.096 Ang
	Δε= 1.110	Δε=0.674
	Ω= 0.026	Ω= 0.887
	f=0.116	f =0.139
	2 🍌 .	

Table 12S	Electron	density	difference	plots of	f electron	transitions	with	oscillation	strength	larger	than	0.1 fo	r all dy	es using	, M062X
functional															

NKX-2677		NKX-2677-P	1	NKX-2677-P2			
<u>م</u>	L=9.748Ang	1917 - 101 - 101	<i>L</i> =10.449 Ang	العامية	<i>L</i> =11.244 Ang		
Sin Sur	Δ <i>e</i> =1.118	3306 0200	∆ <i>e</i> =1.149	A Dia sta Da	Δ <i>e</i> =1.197		
	<i>Ω</i> =0.137	2022 a da 2	Ω=0.110	Show 2	Ω=0.059		
· ' 🤄 🕘 🎝 🖓	<i>f</i> =1.851	* 3	<i>f</i> =2.067	¥9, V	<i>f</i> =1.789		
de la	L=5.257 Ang	12	L=8.898 Ang	4	L=8.624Ang		
Sile . Mar	Δ <i>e</i> =0.825	Stallens.	∆ <i>e</i> =0.941	a and the	Δ <i>e</i> =0.900		
A Solution of the second second	<i>Ω</i> =0.751		Ω=0.320		Ω=0.268		
J. J. J. J. J.	<i>f</i> =0.177	2.30	<i>f</i> =0.277	3.9°	<i>f</i> =0.678		
sin .	L=7.423 Ang	Tostor 1.	L=7.492 Ang		<i>L</i> =7.404 Ang		
514 . MA	Δ <i>e</i> =0.806		Δ <i>e</i> =0.700	San all San 1	∆ <i>e</i> =0.734		
A Share Burgare	<i>Ω</i> =0.504	and a start	Ω=0.517		Ω=0.191		
· 3e ⁰ 🔵 🗛 • 2	<i>f</i> =0.180	14.	<i>f</i> =0.104	393 ° 0 ° 1 ° 1	<i>f</i> =0.446		
Secondor:	<i>L</i> =6.699 Ang	11	L=7.192 Ang				
	Δ <i>e</i> =0.6270		Δ <i>e</i> =0.5873				
	Ω=0.5899		Ω=0.5707				
	<i>f</i> =0.1317	~ 9.9.	<i>f</i> =0.1339				

1 2 day	L=3.737 Ang	Joans I.	L=4.753 Ang
	Δ <i>e</i> =0.592		∆ <i>e</i> =0.483
	<i>Ω</i> =0.808	Sold Branks	Ω=0.786
· 30, · 3 9 · · · ·	<i>f</i> =0.112	19.	f=0.175
	L=4.001 Ang		<i>L</i> =5.057 Ang
- 12. j	Δ <i>e</i> =0.515		Δ <i>e</i> =0.565
	<i>Ω</i> =0.817		Ω=0.654
, 3 , 6 , 10, 10	<i>f</i> =0.213	3 . 3.	f=0.557
- 1	<i>L</i> =1.158 Ang		
See 2	∆ <i>e</i> =0.553		
	Ω=0.930		
	<i>f</i> =0.320		

NKX-2700		NKX-2700-P1		NKX-2700-P2			
	L=10.995 Ang	de la	<i>L</i> =11.841 Ang	. jar 💿	L=12.812 Ang		
	∆ <i>e</i> =1.060	Sin 600	∆ <i>e</i> =1.166		∆ <i>e</i> =1.155		
As Marses	Ω= 0.143	310 (1 05 5	Ω= 0.076		Ω= 0.052		
342 🌒 🗛	<i>f</i> =2.347	·	<i>f</i> =2.194	79, 0 0000	<i>f</i> =2.178		
1. ja	<i>L</i> =6.517 Ang	130	<i>L</i> =8.254 Ang		L=11.418Ang		
The state	∆ <i>e</i> =0.803	Site and the	Δ <i>e</i> =0.873	A Distant of State	∆ <i>e</i> =0.899		
And Dignar	<i>Ω</i> = 0.718		<i>Ω</i> = 0.516		Ω= 0.145		
.)e ^g . 🗿 🛶 ei	<i>f</i> =0.170		<i>f</i> =0.162	i gji 🔰 👘 🖓	<i>f</i> =0. 578		
1.12	L=8.829 Ang		<i>L</i> =10.661 Ang	. (a)	<i>L</i> =10.746 Ang		
Ser	∆ <i>e</i> =0.813	15. Adia	Δ <i>e</i> =0.931	2000 A	∆ <i>e</i> =0.663		
	<i>Ω</i> = 0.481		<i>Ω</i> = 0.166		Ω= 0.257		
	<i>f</i> =0.202	·	<i>f</i> =0.334	39. 0 0	<i>f</i> =0.155		
1	L=2.078 Ang	<u>्र</u> के –	<i>L</i> =8.705 Ang				
	Δ <i>e</i> =0.515	30	Δ <i>e</i> =0.712				
SSIS Barren	<u>Ω</u> =902		Ω= 0.181				
*** ***	<i>f</i> =0.117	·	<i>f</i> =0.132				
. .	L= 6.798 Ang	ب	<i>L</i> =7.121 Ang				
- 🐔 🖓 🖓 🖓 🖓	∆ <i>e</i> =0.548		Δ <i>e</i> =0.802				
	<i>Ω</i> = 0.611		<i>Ω</i> = 0.391				
1	<i>f</i> =0.174		<i>f</i> =0.373				
1	L=0.750Ang						
- 3 2	∆ <i>e</i> =0.555						
Store Colores	Ω= 0.938						
1 1 4 2 4 1 1 1	<i>f</i> =0.325						

NKX-2883		NKX-2883-P1		NKX-2883-P2	
	L= 9.403 Ang	a 116.ar	L=10.405Ang		<i>L</i> =11.182 Ang
	∆ <i>e</i> =0.100		∆ <i>e</i> =1.120	San Sin Co	∆ <i>e</i> =1.144
	Ω= 0.350		Ω= 0.192		Ω=0.168
	f=2.255		<i>f</i> =2.001	1 mg 10	<i>f</i> =2.024
~ <u>````</u>	<i>L</i> = 6.432 Ang	··· \$	L=7.947 Ang	🥳 . 🥄 🦝 🕬 a e	<i>L</i> =10.673 Ang
3 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	∆ <i>e</i> = 0.838		Δ <i>e</i> =0.876	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Δ <i>e</i> =0.830
	Ω= 0.723	San as	Ω= 0.545		Ω= 0.242
~ ~ ???"	<i>f</i> =0.144	್ರಾಚ್ರಿಸಿ ರಿ	<i>f</i> =0.203		<i>f</i> =0.242
a 'ad a d ?'	<i>L</i> = 7.291 Ang		L=8.937 Ang		<i>L</i> =11.191Ang
Stand Stand of a	Δ <i>e</i> = 0.828		∆ <i>e</i> =0.841		Δ <i>e</i> =0.811
	Ω= 0.551		Ω= 0.306		<i>Ω</i> = 0.172
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>f</i> =0.105		<i>f</i> =0.206		<i>f</i> =0.376
	<i>L</i> = 0.250 Ang	6 <b>00</b> 00	L=6.353 Ang	S. S. Salaria.	L=8.224 Ang
	Δ <i>e</i> = 0.625		∆ <i>e</i> =0.649		Δ <i>e</i> =0.704
200. C	<i>Ω</i> = 0.978	100 million 100	Ω= 0.680		<i>Ω</i> = 0.513
1	<i>f</i> =0.194		<i>f</i> =0.295	34.	<i>f</i> =0.0.240
	<i>L</i> = 8.743 Ang				
	∆ <i>e</i> =0.952				
	Ω= 0.130				
2.0.	<i>f</i> =0.337				

NKX-2883-Q1		NKX-2883-Q2			
· · · · · · · ·	<i>L</i> =11.782 Ang	and a set of a set of a	L=12.934 Ang		
Non series	∆ <i>e</i> =1.050	Sin a solo	Δ <i>e</i> =1.073		
	<i>Ω</i> = 0.216		Ω= 0.241		
	<i>f</i> =2.270		<i>f</i> =2.117		
~		14			
	L=9.596 Ang		L=11.184 Ang		
	Δ <i>e</i> =0.872	- Saint Maria 72	Δ <i>e</i> =0.816		
	Ω= 0.495		Ω= 0.472		
	<i>f</i> =0.199		<i>f</i> =0.607		
22					
• • • • • ·	L=10.275 Ang	2. Q 1. 1 . 1 . 1	L=13.666 Ang		
	∆ <i>e</i> =0.794	Solo and a second	Δ <i>e</i> =0.843		
S. C. S.	Ω= 0.349		Ω= 0.236		
	<i>f</i> =0.227		<i>f</i> =0.226		
2.40		, <u>;</u>			
200° 🐁 加 🖕 🦢	L=5.455ng	پېر 🛌 🌒 يود	L=5.586 Ang		
Sold Call	∆ <i>e</i> = 0.649		Δ <i>e</i> =0.601		
	Ω= 0.825		Ω= 0.750		
	<i>f</i> =0.171	ະດີ _ຍ າຍີ່ 🦉 🚾 🖉 🖉 🧔	<i>f</i> =0.102		
13		5 5			

*f*=0.337

	L=3.398 Ang		<i>L</i> = 5.262 Ang
18 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1	Δ <i>e</i> =0.620	San Shire Mart	Δ <i>e</i> = 0.484
	Ω= 0.898		Ω= 0.852
	<i>f</i> =0.220		<i>f</i> =0.149
2.20		a der	
د د د	L=1.789 Ang	م المراجع المراجع الم	L=4.529 Ang
- 18 <b>`````````````````````````````````</b>	Δ <i>e</i> =0.410	- 3.4. <b>3</b> 5.75 1. 1944	∆ <i>e</i> =0.480
	Ω= 0.982		Ω= 0.852
	<i>f</i> =0.295		<i>f</i> =0.201
		2.00	
	L=1.282 Ang	a 🌒 🙀 📜 🎽 🖉	L=8.734 Ang
	Δ <i>e</i> =0.650		Δ <i>e</i> = 0.619
	<i>Ω</i> = 0.801		Ω= 0.634
^{ຸ ວັ} ລຸ ລົ _ຍ ເ	<i>f</i> =0.133		<i>f</i> =0.175
ن ن ن		23.	
		19. <b>1</b> . 1	<i>L</i> =4.787 Ang
		- Paris 28 20 and 19	Δ <i>e</i> =0.405
		<b></b>	Δ <i>e</i> =0.405 Ω= 0.869
			Δ <i>e</i> =0.405 Ω= 0.869 <i>f</i> =0.448
			Δ <i>e</i> =0.405 Ω= 0.869 <i>f</i> =0.448
			Δe=0.405 Ω= 0.869 f=0.448
			$\Delta e=0.405$ $\Omega = 0.869$ f=0.448 <i>L</i> =4.687Ang $\Delta e=0.334$
			$\Delta e=0.405$ $\Omega = 0.869$ f=0.448 <i>L</i> =4.687Ang $\Delta e=0.334$ $\Omega = 0.904$
			$\Delta e=0.405$ $\Omega = 0.869$ f=0.448 L=4.687 Ang $\Delta e=0.334$ $\Omega = 0.904$ f=0.253
			$\Delta e=0.405$ $\Omega = 0.869$ f=0.448 L=4.687 Ang $\Delta e=0.334$ $\Omega = 0.904$ f=0.253
			$\Delta e=0.405$ $\Omega = 0.869$ f=0.448 L=4.687 Ang $\Delta e=0.334$ $\Omega = 0.904$ f=0.253 L=0.243  Ang
			$\Delta e=0.405$ $\Omega = 0.869$ f=0.448 L=4.687 Ang $\Delta e=0.334$ $\Omega = 0.904$ f=0.253 L=0.243  Ang $\Delta e=0.287$
			Δe=0.405 Ω= 0.869 f=0.448 L=4.687Ang Δe=0.334 Ω= 0.904 f=0.253 L=0.243Ang Δe=0.287 Ω= 0.942
			$\Delta e=0.405$ $\Omega = 0.869$ f=0.448 L=4.687Ang $\Delta e=0.334$ $\Omega = 0.904$ f=0.253 L=0.243 Ang $\Delta e=0.287$ $\Omega = 0.942$ f=0.256

NKX-2311					
ತೆಹ್	<i>L</i> = 4.514 Ang	<b>*</b>	L=4.321 Ang		
	$\Delta e = 1.034$	Mar and the second s	∆ <i>e</i> =0.846		
	Ω= 0.425		Ω= 0.583		
	<i>f</i> =1.553		<i>f</i> =0.138		
		2.2			
	<i>L</i> = 4.473 Ang	<b></b>	L=1.265Ang		
	Δ <i>e</i> = 0.764		Δ <i>e</i> =0.600		
	Ω= 0.504		<i>Ω</i> = 0.897		
	<i>f</i> =0.173		<i>f</i> =0.504		
· /		2.3			
	L =2.013 Ang				
	Δ <i>e</i> = 0.634				
	<i>Ω</i> = 0.824				
	<i>f</i> =0.142				

 Table 13S Electron density difference plots of electron transitions with oscillation strength larger than 0.1 for all dyes using B3LYP functional

NKX-2677		NKX-2677-P	1	NKX-2677-P2	
	L=9.367 Ang		L=10.389 Ang	4	<i>L</i> =11.800 Ang
Alex Martin	Δ <i>e</i> =1.129	Jan Start	Δ <i>e</i> =1.223	10 x x 10 x	∆ <i>e</i> =1.364
31000	Ω=0.170	201	Ω=0.117	303320	Ω=0.026
73. <b>0</b> • · ·	<i>f</i> =1.272		<i>f</i> =1.315	79,000000	<i>f</i> =0.775
	L=5.889 Ang	14	<i>L</i> =6.542 Ang	. *	<i>L</i> =8.186 Ang
<b>2</b> 10	Δ <i>e</i> =0.819	and a start of the	∆ <i>e</i> =0.883	AN SUSAN	∆ <i>e</i> =1.144
A Bas Magae	Ω=0.704		<i>Ω</i> =0.644	Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	Ω=0.242
· 9. 0 · · ·	<i>f</i> =0.701	390	<i>f</i> =0.874		<i>f</i> =0.320
. S.	L=5.022 Ang		<i>L</i> =3.543 Ang		<i>L</i> =8.110 Ang
	Δ <i>e</i> =0.811		Δ <i>e</i> =0.606		∆ <i>e</i> =1.038
And Party and	Ω=0.780		<i>Ω</i> =0.857		Ω=0.358
. 'a'	<i>f</i> =0.117		<i>f</i> =0.141		<i>f</i> =0.619
		4	L=4.254 Ang		<i>L</i> =10.190 Ang
			Δ <i>e</i> =0.631		Δ <i>e</i> =1.168
			<i>Ω</i> =0.818		<i>Ω</i> =0.029
		790 ° '	<i>f</i> =0.123	· y. 🗸	<i>f</i> =0.193
				. 🐝	L=9.373 Ang
				2 martial and a start	Δ <i>e</i> =0.903
					<i>Ω</i> = 0.197
				29.0	<i>f</i> =0.205



NKX-2700		NKX-2700-P1		NKX-2700-P2	
de la	L=10.301 Ang	in a	<i>L</i> =11.515 Ang	. ຈັ່ງ: 💿	L=13.075 Ang
S of the second second	Δ <i>e</i> =1.101	Six and soir	Δ <i>e</i> =1.211	S Strates	Δ <i>e</i> =1.357
	Ω= 0.200	A State Stat	<i>Ω</i> = 0.104		<i>Ω</i> = 0.028
	<i>f</i> =1.650	) v 👌 y - i	<i>f</i> =1.410		<i>f</i> =0.902
. ta	L=7.801 Ang	1.12	L=9.905 Ang	1	L=10.093 Ang
and the second second	Δ <i>e</i> =0.818	Stan in the second	Δ <i>e</i> =0.905	Station S.	∆ <i>e</i> =0.925
	Ω= 0.605		Ω= 0.328		<i>Ω</i> = 0.340
28. 02. 10 4. 10	<i>f</i> =0.831		<i>f</i> =0.992	39. <b>1</b> . 11. 1. 10.	<i>f</i> =1.399
1.20	L=5.660 Ang	. ta	L=4.886 Ang		
Stranger .	Δ <i>e</i> =0.809		Δ <i>e</i> =0.681		
	Ω= 0.774	NON ANY	Ω= 0.842		
, 'a' - 👌 📥 🖌	<i>f</i> =0.103		<i>f</i> =0.115		

NKX-2883		NKX-2883-P1		NKX-2883-P2	
	<i>L</i> = 9.024 Ang	<b>9. 37.</b>	<i>L</i> =10.270Ang	dat 🌖 of Alara	L=12.187Ang
Sin Marine	Δ <i>e</i> =1.070	3 and the second	Δ <i>e</i> =1.195	and show of	Δ <i>e</i> =1.323
	<i>Ω</i> = 0.372		Ω= 0.198		Ω=0.077
*****	<i>f</i> =1.725		<i>f</i> =1.382	24.	<i>f</i> =1.102
1.1 C 6.4	<i>L</i> = 5.232 Ang	a. <b>Ma</b>	L=6.937 Ang	tet 🔍 and and a sec	L=7.221 Ang
Same Ostan	Δ <i>e</i> = 0.855		Δ <i>e</i> =0.950	10000000000	∆ <i>e</i> =0.983
Solar Maria	<i>Ω</i> = 0.804		Ω= 0.643	Solution 2 2 4	Ω= 0.548
	<i>f</i> =0.491	75	<i>f</i> =0.664		<i>f</i> =0.909
14 . No	<i>L</i> = 6.188 Ang		L=8.902 Ang	in the second	L=12.127 Ang
	Δ <i>e</i> = 0.808		Δ <i>e</i> =0.902		Δ <i>e</i> =1.020
	Ω= 0.735		Ω= 0.342		<i>Ω</i> = 0.061
230	<i>f</i> =0.149		<i>f</i> =0.233		<i>f</i> =0.365
	<i>L</i> = 5.555 Ang	<b>a</b> 🥌	<i>L</i> =5.413 Ang	<u> </u>	L=4.723 Ang
300 Y. O.	Δ <i>e</i> = 0.696	Sector Star	Δ <i>e</i> =0.766		Δ <i>e</i> =0.698
	Ω= 0.743		Ω= 0.628		Ω= 0.823
and the second s	<i>f</i> =0.100	r the const	<i>f</i> =0.212	34.	<i>f</i> =0.146
San Bart	<i>L</i> = 2.030 Ang	3 DA	<i>L</i> =4.933 Ang	🕺 🎗 🛋 🔬 🖬	L=6.885 Ang
	Δ <i>e</i> =0.701	Sala Sala Sala Sala Sala Sala Sala Sala	Δ <i>e</i> =0.862		Δ <i>e</i> =0.702
	Ω= 0.930		Ω= 0.714		Ω= 0.674
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<i>f</i> =0.143		<i>f</i> =0.179	" the second sec	<i>f</i> =0.166



*L*=6.705Ang ∆*e*=0.943

Ω= 0.520 *f*=0.116

NKX-2883-Q1		NKX-2883-Q2			
a 🗛 🚔	L=12.587 Ang		L=16.245Ang		
	Δ <i>e</i> =1.208		∆ <i>e</i> =1.345		
	Ω= 0.118		Ω= 0.018		
	<i>f</i> =1.424	2015 X X 10	<i>f</i> =0.953		
22.					
0.04.00	<i>L</i> =7.028 Ang	tet 🔍 tal states	L=6.920 Ang		
	Δ <i>e</i> =0.964	San Die Halle	∆ <i>e</i> =0.972		
	Ω= 0.689		Ω= 0.600		
	<i>f</i> =0.834		<i>f</i> =1.126		
		19-			
2. <b>Má mÍt</b> ia a	<i>L</i> =10.173 Ang	52 S. 54 . Main a	L=9.780 Ang		
	∆ <i>e</i> =0.952		∆ <i>e</i> =0.964		
	Ω= 0.320		Ω= 0.317		
2 (2)	<i>f</i> =0.217		<i>f</i> =0.413		
دد	<i>L</i> =6.569 Ang		L=7.652 Ang		
State Stat	Δ <i>e</i> = 0.676		Δ <i>e</i> =0.795		
	Ω= 0.728		Ω= 0.504		
	<i>f</i> =0.115	19 ⁴ 9 ⁴ 9 ⁴ 9 ⁴ 💭 🗩 9	<i>f</i> =0.129		
3.3					
9. <u>0.4</u>	L=7.258 Ang		L=8.357 Ang		
	Δ <i>e</i> =0.818	- ALL BRANCE	Δ <i>e</i> =0.834		
	Ω= 0.642		<i>Ω</i> = 0.564		
	<i>f</i> =0.132	1 2 2 ku	<i>f</i> =0.320		
لا د		12.			
s. 100	<i>L</i> =3.030 Ang	at 🖇 🎦 🖬 🖉 🐴 🖉	L=3.196 Ang		
	Δ <i>e</i> =0.806	- Jacoba Chi	Δ <i>e</i> =0.616		
	Ω= 0.807		Ω= 0.903		
10 10 10 10 10 10 10 10 10 10 10 10 10 1	<i>f</i> =0.251	1981 C	<i>f</i> =0.192		
2.2		, <u>1</u>			

	NKX-2311					
	<i>L</i> = 4.549 Ang	<b>*</b>	L=4.254 Ang			
	Δ <i>e</i> = 1.363		∆ <i>e</i> =0.854			
	<i>Ω</i> = 0.422		Ω= 0.593			
	<i>f</i> =1.626		<i>f</i> =0.111			
-2-3		J 3				
	<i>L</i> = 4.464 Ang	<b>Š</b>	<i>L</i> =0.654 Ang			
	Δ <i>e</i> = 0.777	-	∆ <i>e</i> =0.631			
	Ω= 0.492		<i>Ω</i> = 0.892			
	<i>f</i> =0.177		<i>f</i> =0.221			
2.0		2 2 2				
<b>Š</b>	<i>L</i> = 0.539 Ang	ه ه	L=1.433 Ang			
19 ² 0 000	Δ <i>e</i> =0.600		Δ <i>e</i> =0.747			
	Ω= 0.927		Ω= 0.850			
	<i>f</i> =0.345		<i>f</i> =0.125			
ن ن ت		3 7				
	<i>L</i> = 1.674 Ang					
	Δ <i>e</i> = 0.680					
	<i>Ω</i> = 0.846					
	<i>f</i> =0.118					
1 🔭						

Table 14S The electron density difference plots of electron transitions of all systems using PBE0 functional.

NKX-2677		NKX-2677-P1		NKX-2677-	P2
. 120	<i>L</i> =9.503 Ang	12	<i>L</i> =10.423 Ang		<i>L</i> =11.715Ang
50 m . 10. A.	∆ <i>e</i> =1.136		∆ <i>e</i> =1.220	Son as Son	∆ <i>e</i> =1.352
	Ω=0.151		Ω=0.108		Ω=0.027
· 36'' 🔵 🌒 🖓	<i>f</i> =1.407		<i>f</i> =1.472	79. 0	<i>f</i> =0.911
1	L=5.947 Ang	1	<i>L</i> =5.941 Ang		L=7.888 Ang
The base	Δ <i>e</i> =0.809	Stratos .	Δ <i>e</i> =0.889	3 Basis	Δ <i>e</i> =0.947
A Charles Dalans	<i>Ω</i> =0.694		<i>Ω</i> =0.684		Ω=0.380
· 'es, · · · · · · · · · · · · · · · · · · ·	<i>f</i> =0.614	39.	<i>f</i> =0.742	5°93 🔰	<i>f</i> =0.933
110	L=5.228 Ang		L=3.466 Ang		L=9.363 Ang
	∆ <i>e</i> =0.825		∆ <i>e</i> =0.642		Δ <i>e</i> =0.877
A and Dalan.	<i>Ω</i> =0.760		Ω=0.847		<i>Ω</i> =0.176
· Jer O And	<i>f</i> =0.130		<i>f</i> =0.141		<i>f</i> =0.421
		1 al	<i>L</i> =1.165 Ang	1.121	L=4.912 Ang
		A CONTRACTOR	Δ <i>e</i> =0.697	Ser Suis	Δ <i>e</i> =0.774
			<i>Ω</i> =0.931		Ω=0.624
		2.300	<i>f</i> =0.105	2.92.0	<i>f</i> =0.108



*L*=8.749 Ang ∆*e*=1.087

Ω=0.099

*f*=0.106

NKX-2700		NKX-2700-P1		NKX-2700-P2	NKX-2700-P2	
1.18° 🔘	<i>L</i> =10.514Ang		L=11.579 Ang	1. No.	<i>L</i> =13.000 Ang	
Since a state	Δ <i>e</i> =1.101	10 ADA	∆ <i>e</i> =1.211	Jon Marson	∆ <i>e</i> =1.331	
	Ω= 0.177		Ω= 0.094	A Maria Sa	<i>Ω</i> = 0.027	
ن روچی چون	<i>f</i> =1.825	· ?	<i>f</i> =1.575	79. V	<i>f</i> =1.080	
1.100	L=7.949 Ang	a la companya da companya d	L=9.631 Ang		L=9.817 Ang	
	∆ <i>e</i> =0.818	S S S S S S S S S S S S S S S S S S S	∆ <i>e</i> =0.892		Δ <i>e</i> =0.910	
	Ω= 0.583		Ω= 0.366		<i>Ω</i> = 0.360	
3. get	<i>f</i> =0.711		<i>f</i> =0.891		<i>f</i> =1.305	
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	L=5.822Ang	,	L=9.490Ang	Contraction of the second second	<i>L</i> =11.127 Ang	
Sha bha	∆ <i>e</i> =0.828		Δ <i>e</i> =0.910		Δ <i>e</i> =0.906	
	Ω= 0.759		Ω= 0.387		<i>Ω</i> = 0.170	
	<i>f</i> =0.122		<i>f</i> =0.111		<i>f</i> =0.185	
				. <b>()</b>	L=8.084Ang	
				and the set of	Δ <i>e</i> =0.659	
					<i>Ω</i> = 0.526	
					<i>f</i> =0.129	

NKX-2883		NKX-2883-P1		NKX-2883-P2	
	<i>L</i> = 9.078 Ang		L=10.228Ang	. 🐮 . 🔍 🛋 🗃 🗛 🖬	L=12.026 Ang
	∆ <i>e</i> =1.059	Sold States	∆ <i>e</i> =1.174		Δ <i>e</i> =1.291
	Ω= 0.364		Ω= 0.195		Ω=0.085
	<i>f</i> =1.897	- And Carlo	<i>f</i> =1.568	790	<i>f</i> =1.371
5 3 1 2 a 2	<i>L</i> = 5.526 Ang	9. 🛄 🕺	L=6.860Ang		<i>L</i> =7.518 Ang
	Δ <i>e</i> = 0.876	Solo and	Δ <i>e</i> =0.958		Δ <i>e</i> =0.992
	Ω= 0.778		Ω= 0.637		Ω= 0.528
	<i>f</i> =0.361	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>f</i> =0.501	- And the second	<i>f</i> =0.653
	<i>L</i> = 5.994 Ang	5. <b>Ma</b>	L=8.567Ang	No. Sanda e	L=12.256 Ang
San Sur Sur	∆ <i>e</i> = 0.816		∆ <i>e</i> =0.922		Δ <i>e</i> =0.991
	Ω= 0.739		Ω= 0.368		Ω= 0.063
- Ser	<i>f</i> =0.175	-de-	<i>f</i> =0.284	1	<i>f</i> =0.468
9. 05 Ad.	<i>L</i> = 6.286 Ang		<i>L</i> =4.763 Ang	35°. 🍳 ad ad a 🗸	L=7.782 Ang
	Δ <i>e</i> = 0.659		Δ <i>e</i> =0.834	1000 013 Cross.	Δ <i>e</i> =0.818
	Ω= 0.697		Ω= 0.656		Ω= 0.462
- Agen	<i>f</i> =0.108	Jag Byn	<i>f</i> =0.254	a com	<i>f</i> =0.160





∆*e*=0.6509 Ω= 0.828

molecule	ε _{lumo}	Δε _{номо-luomo}	ε _{номо}
Coumarin343	-1.626		-5.267
frag-2311	-2.752		-7.256
frag-2677	-2.890		-5.967
frag-2677-P1	-3.054		-6.546
frag-2677-P2	-3.184		-6.586
frag-2700	-2.904		-5.660
frag-2700-P1	-3.081		-6.083
frag-2700-P2	-3.172		-6.569
frag-2883	-3.066		-5.979
frag-2883-P1	-3.207		-6.460
frag-2883-P2	-3.290		-7.084
frag-2883-Q1	-3.065		-6.193
frag-2883-Q2	-3.011		-6.297
NKX-2311	-2.693	2.614	-5.307
NKX-2677	-2.878	2.177	-5.055
NKX-2677-P1	-2.963	2.182	-5.145
NKX-2677-P2	-3.099	2.192	-5.291
NKX-2700	-2.896	2.071	-4.967
NKX-2700-P1	-3.049	2.010	-5.059
NKX-2700-P2	-3.110	2.143	-5.253
NKX-2883	-3.011	2.150	-5.161
NKX-2883-P1	-3.125	2.113	-5.238
NKX-2883- P2	-3.182	2.200	-5.382
NKX-2883-Q1	-3.017	2.164	-5.180
NKX-2883- Q2	-2.975	2.305	-5.280

**Table 15S** Calculated HOMO, LUMO energy levels (eV) of all sensitizers and the HOMO, LUMO energy levels (eV) of the donor (coumarin343) and the acceptor (conjugated  $\pi$ -spacer and anchoring group) fragments of all sensitizer obtained by B3LYP functional

molecule	ε _{LUMO}	$\Delta \epsilon_{\text{HOMO-LUOMO}}$	ε _{номо}
Coumarin343	-0.758		-6.571
frag-2311	-1.749		-8.777
frag-2677	-2.051		-7.221
frag-2677-P1	-2.202		-7.870
frag-2677-P2	-2.302		-8.207
frag-2700	-2.246		-6.802
frag-2700-P1	-2.251		-7.37
frag-2700-P2	-2.311		-7.945
frag-2883	-2.219		-7.186
frag-2883-P1	-2.360		-7.727
frag-2883-P2	-2.423		-8.393
frag-2883-Q1	-2.245		-7.441
frag-2883-Q2	-2.201		-7.555
NKX-2311	-1.941	4.503	-6.444
NKX-2677	-2.132	4.062	-6.194
NKX-2677-P1	-2.144	4.100	-6.244
NKX-2677-P2	-2.384	4.001	-6.385
NKX-2700	-2.203	3.889	-6.091
NKX-2700-P1	-2.309	3.854	-6.164
NKX-2700-P2	-2.398	3.960	-6.358
NKX-2883	-2.337	3.963	-6.2996
NKX-2883-P1	-2.393	3.924	-6.3162
NKX-2883-P2	-2.492	3.954	-6.4460
NKX-2883-Q1	-2.356	3.972	-6.3282
NKX-2883-Q2	-2.301	2.600	-6.3962

**Table 16S** Calculated HOMO, LUMO energy levels (eV) of all sensitizers and the HOMO, LUMO energy levels (eV) of the donor (coumarin343) and the acceptor (conjugated  $\pi$ -spacer and anchoring group) fragments of all sensitizer obtained by M062X functional

system	orbital	Anchoring ligand	π-linker	C343
NKX-2311	НОМО	17	13	70
	LUMO	34	18	47
	LUMO+1	27	10	63
NKX-2677	НОМО	7	37	56
	LUMO	36	49	15
	LUMO+1	16	24	61
NKX-2677-P1	НОМО	4	32	64
	LUMO	42	45	13
	LUMO+1	16	19	66
NKX-2677-P2	НОМО	1	11	88
	LUMO	49	45	6
	LUMO+1	13	30	57
NKX-2700	НОМО	7	46	47
	LUMO	31	57	12
	LUMO+1	17	29	54
NKX-2700-P1	НОМО	5	36	59
	LUMO	41	50	10
	LUMO+1	19	28	53
NKX-2700-P2	НОМО	1	14	85
	LUMO	42	53	5
	LUMO+1	18	38	44
NKX-2883	НОМО	6	46	48
	LUMO	24	55	21
	LUMO+1	24	41	36
NKX-2883-P1	НОМО	2	38	60
	LUMO	33	52	15
	LUMO+1	22	37	41
NKX-2883-P2	НОМО	1	25	74
	LUMO	43	49	8
	LUMO+1	14	38	48
NKX-2883-Q1	НОМО	2	42	57
	LUMO	34	54	12
	LUMO+1	18	41	41
NKX-2883-Q2	HOMO	0	30	69
	LUMO	45	51	4
	LUMO+1	8	46	46

**Table 17S** Molecular orbital composition (in %) of the highest occupied and two lowest unoccupied molecular orbital of the twelve coumarin sensitizers performed in ethanol solvent using B3LYP functional and the 6-31G(d,p) basis set.

system	orbital	Anchoring ligand	π-linker	C343
NKX-2311	НОМО	16	13	70
	LUMO	34	19	47
	LUMO+1	27	10	63
NKX-2677	НОМО	6	36	58
	LUMO	36	49	14
	LUMO+1	16	24	60
NKX-2677-P1	НОМО	3	31	66
	LUMO	42	45	13
	LUMO+1	16	19	66
NKX-2677-P2	НОМО	1	10	89
	LUMO	49	46	6
	LUMO+1	14	30	56
NKX-2700	НОМО	6	45	49
	LUMO	32	57	11
	LUMO+1	17	29	53
NKX-2700-P1	НОМО	5	35	60
	LUMO	41	50	9
	LUMO+1	19	28	53
NKX-2700-P2	НОМО	1	14	86
	LUMO	41	54	5
	LUMO+1	18	38	43
NKX-2883	HOMO	5	45	50
	LUMO	24	55	21
	LUMO+1	25	40	35
NKX-2883-P1	HOMO	2	37	61
	LUMO	33	53	15
	LUMO+1	22	37	41
NKX-2883-P2	НОМО	1	24	75
	LUMO	43	50	8
	LUMO+1	14	38	47
NKX-2883-Q1	НОМО	1	40	58
	LUMO	34	55	11
	LUMO+1	18	41	41
NKX-2883-Q2	НОМО	0	30	70
	LUMO	44	52	4
	LUMO+1	8	47	45

 Table 18S
 Molecular orbital composition (in %) of the highest occupied and two lowest unoccupied molecular orbital of the twelve coumarin sensitizers performed in ethanol solvent using PBE0 functional and the 6-31G(d,p) basis set.

scheme	Dye⁺	Dye ⁺²	ΔG(aq)
NKX-2311	-1376.9660	-1376.5874	10.3021
NKX-2677	-2402.6491	-2402.3104	9.2164
NKX-2677-P1	-2113.9945	-2113.6450	9.5102
NKX-2677-P2	-1825.3309	-1824.9602	10.0871
NKX-2700	-2479.9639	-2479.6372	8.8898
NKX-2700-P1	-2191.3100	-2190.9704	9.2409
NKX-2700-P2	-1902.6453	-1902.2898	9.6735
NKX-2883	-2572.0934	-2571.7594	9.0885
NKX-2883-P1	-2283.4424	-2283.0977	9.3796
NKX-2883-P2	-1994.7868	-1994.4233	9.8912
NKX-2883-Q1	-2420.8846	-2420.5487	9.1402
NKX-2883-Q2	-2269.6788	-2269.3410	9.1919

**Table 19S** Calculated energy (a.u) of the oxidized coumarin dyes in ethanol solvent using PBE0 functional and the 6-31G(d,p) basis set

scheme	Dye⁺	Dye ⁺²	$\Delta G_{(aq)}$
NKX-2311	-1378.6084	-1378.3760	6.3235
NKX-2677	-2404.8416	-2404.6343	5.6453
NKX-2677-P1	-2116.1605	-2115.9437	5.9001
NKX-2677-P2	-1827.4690	-1827.2324	6.4385
NKX-2700	-2482.2532	-2482.0529	5.4527
NKX-2700-P1	-2193.5692	-2193.3594	5.7076
NKX-2700-P2	-1904.8791	-1904.6492	6.2550
NKX-2883	-2574.4878	-2574.2795	5.6675
NKX-2883-P1	-2285.8064	-2285.5885	5.9299
NKX-2883-P2	-1997.1241	-1996.8894	6.3867
NKX-2883-Q1	-2423.4130	-2423.2006	5.7796
NKX-2883-Q2	-2272.3441	-2272.1212	6.0667

**Table 20S** Calculated energy (a.u) of the oxidized coumarin dyes in ethanol solvent using B3LYP functional and the 6-31G(d,p) basis set

scheme	Dye*	Dye ⁺²	∆G(aq)
NKX-2311	-1377.9520	-1377.5661	10.5007
NKX-2677	-2404.0415	-2403.6960	9.4014
NKX-2677-P1	-2115.3524	-2114.9952	9.7198
NKX-2677-P2	-1826.6550	-1826.2703	10.4681
NKX-2700	-2481.4114	-2481.0778	9.0776
NKX-2700-P1	-2192.7240	-2192.3762	9.4640
NKX-2700-P2	-1904.0244	-1903.6535	10.0926
NKX-2883	-2573.6186	-2573.2781	9.2653
NKX-2883-P1	-2284.9330	-2284.5806	9.5892
NKX-2883-P2	-1996.2431	-1995.8658	10.2667
NKX-2883-Q1	-2422.4781	-2422.1332	9.3851
NKX-2883-Q2	-2271.3406	-2270.9868	9.6273

**Table 21S** Calculated energy (a.u) of the oxidized coumarin dyes in ethanol solvent using M062X functional and the 6-31G(d,p) basis set