Electronic Supplementary Information (ESI)

A small-molecule chemosensor for the selective detection of

2,4,6-trinitrophenol (TNP)

Jianting Pan^a, Fang Tang^a, Aixiang Ding^a, Lin Kong^a*, Longmei Yang^a,

Xutang Tao^b, Yupeng Tian^a, Jiaxiang Yang^{a,b,*}

ENTRY	CONTENTS	PAGE NO.				
1	Figure S1 . UV-Vis spectra of the probe L (10 μ M) upon addition of TNP in THF. The arrow indicate the change in the absorption intensity with the increased TNP concentration.					
2	Figure S2 . Time resolved fluorescence emission spectra of compound L for different concentrations of TNP. $\lambda_{ex} = 350$ nm.					
3	Figure S3. Job's plot of L with TNP shows 1:1 ratio.					
4	Figure S4 . Stern-Volmer plot of ($I_0/I-1$) values versus TNP concentrations in THF for L (10 μ M). I_0 = peak intensity at [TNP] = 0. λ_{ex} = 350 nm.					
5	Figure S5 . The fluorescence intensity at 440 nm as a function of TNP concentration.	S3				
6	Figure S6 . The interference experiment for L (10 μ M) in THF with 5 equiv. of TNP in presence of other nitro aromatics in excess (10 equiv.).	83				
7	Figure S7 . UV-Vis (a) and fluorescence (b) spectra of the probe L (10 μ M) upon addition of TNP in THF/H ₂ O (1:9, v/v). The arrows indicate the changes in the absorption and fluorescence intensities with the increased TNP concentration ($\lambda_{ex} = 400$ nm).					
8	Figure S8 . Comparison of fluorescence quenching of the probe L $(10 \ \mu\text{M})$ in THF after the addition of 20 equiv. TNP at various excitation wavelengths.					
9	Figure S9 . The whole ¹ H NMR titration spectra (400 MHz) of the probe L with TFA (0, 0.5, 1.0, 2.0 equiv.) in DMSO- d_6 .	S4				
10	Figure S10. ¹ H NMR (DMSO- d_6 , 400 MHz) spectrum of compound L.	S4				
11	Figure S11. ¹³ C NMR (DMSO- d_6 , 100 MHz) spectrum of compound L.	85				
12	Table S1. Hydrogen bond lengths (Å) and bond angles (°)	85				

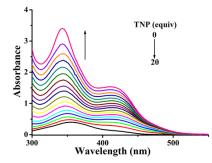


Figure S1. UV-Vis spectra of the probe L (10 μ M) upon addition of TNP in THF. The arrow indicate the change in the absorption intensity with the increased TNP concentration.

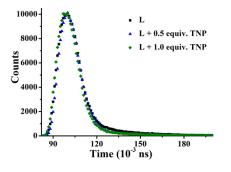


Figure S2. Time resolved fluorescence emission spectra of compound L for different concentrations of TNP. λ_{ex} = 350 nm.

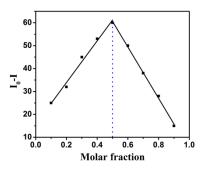
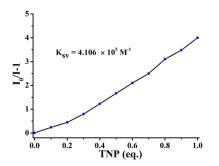
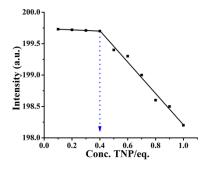
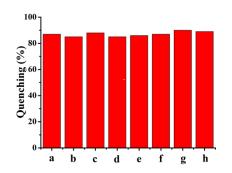



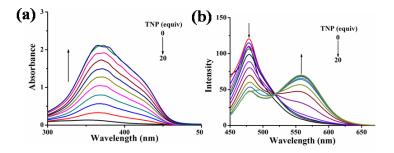
Figure S3. Job's plot of L with TNP shows 1:1 ratio.

Figure S4. Stern-Volmer plot of (I_0/I -1) values versus TNP concentrations in THF for L (10 μ M). I_0 = peak intensity at [TNP] = 0. λ_{ex} = 350 nm.

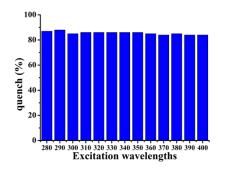



Figure S5. The fluorescence intensity at 440 nm as a function of TNP concentration.

Equation used for calculating detection limit (DL): $DL=C_L \times E_T$


 C_L = Conc. of compound L; E_T = Conc. of titrant at which change observed.

Thus; detection limit for TNP:


 $DL = 1 \times 10^{-6} \times 0.4$ equiv = 4×10^{-7} or = 400 ppb

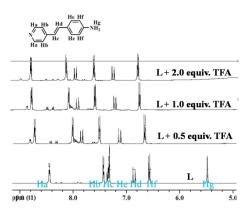

Figure S6. The interference experiment for L (10 μ M) in THF with 5 equiv. of TNP in presence of other nitro aromatics in excess (10 equiv.).

Figure S7. UV-Vis (a) and fluorescence (b) spectra of the probe L (10 μ M) upon addition of TNP in THF/H₂O (1:9, v/v). The arrows indicate the changes in the absorption and fluorescence intensities with the increased TNP concentration ($\lambda_{ex} = 400$ nm).

Figure S8. Comparison of fluorescence quenching of the probe L (10 μ M) in THF after the addition of 20 equiv. TNP at various excitation wavelengths.

Figure S9. The whole ¹H NMR titration spectra (400 MHz) of the probe L with TFA (0, 0.5, 1.0, 2.0 equiv.) in DMSO- d_6 .

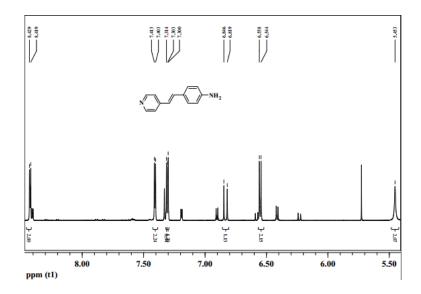


Figure S10. ¹H NMR (DMSO-*d*₆, 400 MHz) spectrum of compound L.

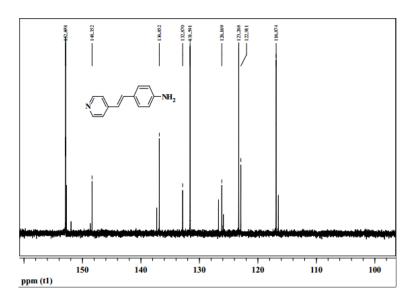


Figure S11. ¹³C NMR (DMSO- d_6 , 100 MHz) spectrum of compound L.

The hydrogen-bonds data of L·TNP.

D–H…A	d(D–H)	$d(H \cdots A)$	$d(D \cdots A)$	∠DHA
C(9)–H(9)…N(5)	0.931	2.646	3.563(3)	168.92
N(5)–H(5B)····O(4)	0.860	2.446	3.158(5)	140.65
C(7)–H(7)····O(2)	0.931	2.475	3.217(3)	136.77
C(10)–H(10)···O(3)	0.930	2.669	3.591(5)	171.29
N(4)–H(4A)····O(5)	0.859	2.277	2.791(5)	118.53
N(4)-H(4A)····O(7)	0.859	1.968	2.763(3)	153.28
N(5)–H(5A)····O(1)	0.860	2.265	3.080(3)	158.32
C(4)–H(4)…O(3)	0.930	2.609	3.386(5)	141.37
C(13)–H(13)…O(6)	0.931	2.614	3.486(5)	156.24

Table S1. Hydrogen bond lengths (Å) and bond angles (°)