Electronic Supplementary information

Spectral and luminescent properties of ZnO/SiO₂ nanoparticles with size-selected ZnO cores

A.E. Raevskaya¹, Ya.V. Panasiuk¹, O.L. Stroyuk^{1*}, S.Ya. Kuchmiy¹, V.M. Dzhagan², A.G. Milekhin^{3,4}, N.A. Yeryukov³, L.A. Sveshnikova³, E.E. Rodyakina³, V.F. Plyusnin⁵, D.R.T. Zahn²

¹ L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine

² Semiconductor Physics, Technische Universität Chemnitz, Chemnitz, Germany

³ Rzhanov Institute of Semiconductor Physics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation

⁴ Novosibirsk State University, Novosibirsk, Russian Federation

⁵ Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation

*Author for correspondence: Oleksandr L. Stroyuk, L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Department of Photochemistry, 31 prosp. Nauky, 03028, Kyiv, Ukraine, *e-mail*: stroyuk@inphyschem-nas.kiev.ua; alstroyuk@ukr.net, tel./fax: +380 44 525 02 70.

Figure S1. Hydrodynamic size distribution of colloidal SiO₂ particles produced by TEOS hydrolysis in the absence of ZnO NPs (curve 1), freshly prepared ZnO/SiO₂ (curve 2) and ZnO/SiO₂ NPs heated at 90 °C for 180 min (curve 3). [ZnO] = 0.02 M, [TEOS] = [NEt₄OH] = 0.04 M.

Figure S2. X-ray diffraction patterns of core-shell ZnO/SiO₂ NPs (curve 1) and ZnO-SiO₂ composite synthesized by co-hydrolysis of ZnAc₂ and TEOS (curve 2). The NPs were synthesized at [ZnO] = 0.02 M, [TEOS] = [NEt₄OH] = 0.05 M. Dashed lines represent characteristic maxima of hexagonal zincite (JCPDS card # 36–1451).

Figure S3. Selected area electron diffraction patterm of ZnO/SiO_2 NPs produced at 1 min ageing of ZnO core before deposition of a silica shell.

Figure S4. Absorption spectra of core/shell ZnO/SiO_2 NPs heated at 90 °C for 0–240 min. Cuvette – 1.0 mm. [ZnO] = 0.02 M, [TEOS] = [NEt₄OH] = 0.04 M.

Figure S5. Absorption (curves 1, 2) and PL (curves 3, 4) spectra of ZnO/SiO₂ colloidal NPs diluted in 20 times by DMSO (curves 1, 3) and water (curves 2, 4) and aged for 14 days. Original zinc oxide concentration is 0.02 M, cuvette – 10.0 mm. (b) PL spectra of ZnO/SiO₂ colloid in DMSO and 1:1 (v/v) mixtures of such colloids with acetone, acetonitrile, ethylene glycol, glycerol, 2-propanol, and toluene. Cuvette – 10.0 mm. *Note*: ZnO/SiO₂ colloids in DMSO should be subjected to the thermal treatment at 60–80 °C for 30 min prior to dilution with water to increase stability of the ZnO/SiO₂ NPs toward aggregation in aqueous environment.

Figure S6. FTIR reflection/absorption spectra of ZnO/SiO₂ NPs produced from ZnO NPs with different size.

Figure S7. TEM (a) and HRTEM (b) images of $ZnO-SiO_2$ NPs produced by cohydrolysis of TEOS and $ZnAc_2$ (0.02 M) at [TEOS] = 0.05 M.

Figure S8. Hydrodynamic size distrubution of $ZnO-SiO_2$ NPs produced by cohydrolysis of TEOS and $ZnAc_2$ (0.02 M) at [TEOS] = 0.01 M (curve 1), 0.02 M (2), 0.05 M (3), 0.08 M (4), 0.12 M (5), and 0.20 M (6). [NEt₄OH] = 0.02 M + 0.5×[TEOS].