Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

> Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Supporting Information

Pegaharmalines A and B, two novel β -carboline alkaloids with unprecedented carbon skeletons from *Peganum harmala*

Kai-Bo Wang,^{*a*} Chun-Mao Yuan,^{*b*} Chun-Mei Xue,^{*a*} Da-Hong Li,^{*a*} Yong-Kui Jing,^{*c*} Hong-Ping He,^{*b*} Xiao-Jiang Hao,^{*b*} Ying-Tong Di,^{**b*} Zhan-Lin Li,^{**a*} and Hui-Ming Hua^{**a*}

^{*a*} Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.

^b State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of

Botany, Chinese Acad-emy of Sciences, Kunming 650201, Yunnan, P. R. China.

^c Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.

^{*} Corresponding authors.

E-mail: huimhua@163.com. lzl1030@hotmail.com. diyt@mail.kib.ac.cn.

Contents

Experimental Section	S4
Fig. S1 Structures of (1 <i>S</i>)-1 and (1 <i>R</i>)-1	S9
Fig. S2 B3LYP/6-31+G** optimized lowest energy 3D conformer of (1 <i>S</i>)-1 and	
(1 <i>R</i>)-1	
Fig. S3 The HPLC chromatograms of pegaharmaline A (1) and its corresponded	
UV spectrum. (MeOH:H ₂ 0 10% \rightarrow 80% 80min)	S10
Fig. S4 The ¹ H-NMR spectrum of pegaharmaline A (1) in DMSO- d_6	S11
Fig. S5 Expanded ¹ H-NMR spectrum of pegaharmaline A (1) in DMSO- d_6	S12
Fig. S6 Expanded ¹ H-NMR spectrum of pegaharmaline A (1) in DMSO- d_6	S13
Fig. S7 The ¹³ C-NMR spectrum of pegaharmaline A (1) in DMSO- d_6	S14
Fig. S8 The ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of pegaharmaline A (1) in DMSO-d ₆	S15
Fig. S9 The NOESY spectrum of pegaharmaline A (1) in DMSO-d ₆	S16
Fig. S10 Expanded NOESY spectrum of pegaharmaline A (1) in DMSO-d ₆	S17
Fig. S11 The HSQC spectrum of pegaharmaline A (1) in DMSO-d ₆	S18
Fig. S12 The HMBC spectrum of pegaharmaline A (1) in DMSO-d ₆	S19
Fig. S13 The HR-ESIMS spectrum of pegaharmaline A (1) in CH ₃ OH	S20
Fig. S14 The UV spectrum of pegaharmaline A (1) in CH ₃ OH	S21
Fig. S15 The IR spectrum of pegaharmaline A (1) in CH ₃ OH	S22
Fig. S16 The ¹ H-NMR spectrum of pegaharmaline B (2) in DMSO-d ₆	S23
Fig. S17 Expanded ¹ H-NMR spectrum of pegaharmaline B (2) in DMSO- d_6	S24

Fig.	S18 Expanded ¹ H-NMR spectrum of pegaharmaline B (2) in DMSO- d_6	.S25
Fig.	S19 The ¹³ C-NMR spectrum of pegaharmaline B (2) in DMSO- d_6	S26
Fig.	S20 The ¹ H- ¹ H COSY spectrum of pegaharmaline B (2) in DMSO- d_6	S27
Fig.	S21 The HSQC spectrum of pegaharmaline B (2) in DMSO- d_6	.S28
Fig.	S22 The HMBC spectrum of pegaharmaline B (2) in DMSO-d ₆	.S29
Fig.	S23 The HR-ESIMS spectrum of pegaharmaline B (2) in CH ₃ OH	
Fig.	S24 The UV spectrum of pegaharmaline B (2) in CH ₃ OH	
Fig.	S25 The IR spectrum of pegaharmaline B (2) in CH ₃ OH	S32

Experimental Section

General experimental procedures. Optical rotations were obtained on a Perkin-Elmer Model 341 polarimeter. UV spectrum was recorded using a Shimadzu UV-2201 spectrometer. CD spectra were measured on Bio-logic MOS 450 spectropolarimeter. ¹H, ¹³C, and 2D-NMR spectra were recorded on Bruker AV-600 NMR spectrometers with TMS as an internal standard. Mass spectra were recorded on Varian QFT-ESI and Bruker micro-TOFQ-Q mass spectrometer (for HR-ESIMS). Column chromatography (CC) was performed with silica gel (Qingdao Marine Chemical-Co., Ltd.), ODS (50µm, YMC Co. Ltd., Kyoto, Japan) and Sephadex LH-20 (GE Healthcare). Preparative HPLC was conducted on a YMC ODS-A column (250 × 20mm I. D., 5 µm) equipped with a LC-6AD pump and a Shimadzu SPD-20A UV-Vis detector (Shimadzu Co., Ltd., Japan).

Plant Material. The plant material was purchased from Anguo medicines Ltd (Hebei), China, in July 2012 and was identified as the seeds of Peganum harmala L. by Prof. Jincai Lu of School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University. The voucher sample (PH-20120705) was deposited in the Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang, China.

Extraction and Isolation. The seeds of P. harmala L. (15.4 kg) were extracted under reflux with 95% ethanol (2×2 h×100 L) and 75% ethanol (1×2 h×100 L), respectively. The combined EtOH extracts were concentrated in vacuo to yield a residue (1.9 kg), which was suspended in water (13 L) and adjusted to pH 3 with 5% HCl. The acidic mixture was partitioned with CH₂Cl₂ (6×13 L), and the aqueous layer was then basified to pH 10 with 3 N NaOH, followed by exhaustive extraction with CH₂Cl₂ (6×13 L) to yield the crude alkaloids (420.2 g). The crude alkaloids were separated by a silica gel chromatography column (CC) using CH₂Cl₂/MeOH (1:0 → 0:1) as eluent, to give nine fractions (Fr. A-Fr. I). Fraction B, eluted with CH₂Cl₂/MeOH (100:1), was chromatographed on silica gel (CH₂Cl₂/acetone 1:0 → 0:1) to yield six subfractions (Fr. B1-Fr. B6). Fr. B2 was then separated by ODS CC, eluted with MeOH-H₂O (60:40) and was purified by preparative HPLC on a YMC C-18 column using MeOH-H₂O

(68:32) as the mobile phase to yield 2 (8.9 mg). Fraction C, eluted with CH₂Cl₂/MeOH (100:3), was chromatographed on silica gel (EtOAc/MeOH 1:0 \rightarrow 0:1) to yield six subfractions (Fr. C1-Fr. C6). Fr. C1 was separated by ODS CC, eluted with MeOH-H₂O (60:40) and was then purified by preparative HPLC on a YMC C-18 column using MeOH-H₂O (70:30) as the mobile phase to yield 1 (3.4 mg).

Cytotoxic Assays. Cytotoxicity of isolated compound 1 was assayed by the trypan blue method^[1] using the human leukaemia cell lines (HL-60), and the MTT assay^[2] using the prostate cancer cell lines (PC-3), michigan cancer foundation-7 cell lines (MCF-7), a lung cancer cells (A549), and liver hepatocellular carcinoma cell lines (HepG-2). The cell lines were purchased from America Type Culture Collection, ATCC (Rockville, MD, USA) and cultured in RPMI-1640 medium (Gibco, New York, NY, USA) supplemented with 100 U/ml penicillin, 100 μ g/ml streptomycin, 1 mM glutamine and 10 % heat-inactivated foetal bovine serum (Gibco).

In the trypan blue method, briefly, cells in logarithmic growth were seeded at a density of 4×104 cells/mL in 24-well microplates and incubated with various concentrations of the compounds under a humidified atmosphere of 5% CO₂ and 95% air at 37 °C for 3 days. The compounds were dissolved in DMSO and then diluted to the proper concentrations. Cell viability was determined after staining the cells with trypan blue and the total cell number was determined using a hematocytometer. 5-Fluorouracil (5-Fu) was used as a positive control.

In the MTT assay, briefly, cells suspensions, 200 µl, at a density of 5×104 cells/mL, were plated in 96-well microtiter plates and incubated for 24 h at 37 °C under 5% CO₂ and 95% air. Then 2 µl test compounds with different concentrations in DMSO were placed into each microtiter plates and further incubated for 72 h. Finally, 50 µl of a 0.4% MTT solution was added to each well and incubated for 4 h. Then, the MTT was removed from the wells and the fromazan crystals were dissolved in DMSO (200 µl). The plates were vibrated for 10 min. The absorbance was then determined on a microplate reader (Bio-RAD) at the wavelength of 570 nm. 5-Fluorouracil (5-Fu) was used as a positive control.

References:

[1] Wang F.; Hua H. M.; Pei Y. H.; Chen D.; Jing Y. K. J. Nat. Prod. 2006, 69, 807-810.

[2] Mosmann, T. J. Immunol. Methods. 1983, 65, 55-63.

Computational methods

The CONFLEX^[1, 2] searches based on molecular mechanics with MMFF94S force fields were performed for (**1***S*)-**1** and its enantiomer (**1***R*)-**1**, which gave 8 stable conformers. Selected conformers of (**1***S*)-**1** and (**1***R*)-**1** with the lowest energy were further optimized by the density functional theory method at the B3LYP/6-31+G** level in Gaussian 03 program package,^[3] which was further checked by frequency calculation and resulted in no imaginary frequencies. The ECD of the conformer of **1** was then calculated by the TDDFT method at the B3LYP/6-31+G** levels with the PCM model in methanol solution. The calculated ECD curve was generated using SpecDis 1.51^[4] with $\sigma = 0.16$ ev, and UV shift -5 nm.

Computational methods for ECD of compound 1

Center Number	Ator Nu	nic A mber	tomic Type	Coordinate X Y	es (Angstroms) Z Z
1	6	0	-5.071017	-0.698261	-0.839280
2	6	0	-4.695544	-1.479762	0.281564
3	6	0	-3.434575	-1.350845	0.863355
4	6	0	-2.559960	-0.416070	0.287310
5	6	0	-2.909430	0.376287	-0.838447
6	6	0	-4.193515	0.218320	-1.395184
7	7	0	-1.272838	-0.074677	0.651609

Standard orientation:

8	6	0	-0.794947	0.887654	-0.232161
9	6	0	-1.768972	1.201107	-1.144427
10	6	0	0.562711	1.539416	-0.140996
11	7	0	0.798575	2.451599	-1.280473
12	6	0	-0.396370	3.157899	-1.781616
13	6	0	-1.551530	2.230314	-2.212043
14	6	0	0.771477	2.231409	1.219933
15	6	0	1.776467	1.649803	1.909525
16	6	0	2.348894	0.575353	1.093483
17	7	0	1.654317	0.529607	-0.108038
18	7	0	3.328145	-0.206139	1.423687
19	6	0	3.708136	-1.150987	0.478299
20	6	0	3.084547	-1.253707	-0.792327
21	6	0	1.990291	-0.335836	-1.146683
22	6	0	4.760304	-2.036121	0.790937
23	6	0	5.171748	-2.988405	-0.131099
24	6	0	4.549887	-3.084851	-1.390617
25	6	0	3.514358	-2.219944	-1.717625
26	6	0	-0.084959	3.382766	1.637308
27	8	0	1.416238	-0.296430	-2.235420
28	6	0	2.336557	1.972397	3.260378
29	8	0	-5.660522	-2.346178	0.726271
30	6	0	-5.363980	-3.178803	1.835896
31	1	0	-6.065794	-0.844099	-1.248937
32	1	0	-3.131834	-1.939788	1.722166
33	1	0	-4.498287	0.804594	-2.258565
34	1	0	-0.734211	-0.515047	1.382967
35	1	0	1.146177	1.865529	-2.040440
36	1	0	-0.751111	3.843649	-1.005389
37	1	0	-0.061177	3.774976	-2.622626
38	1	0	-1.307063	1.747287	-3.170295
39	1	0	-2.458539	2.826944	-2.383338
40	1	0	5.233305	-1.946618	1.764437
41	1	0	5.984200	-3.665205	0.121635
42	1	0	4.880941	-3.833715	-2.104809
43	1	0	3.017395	-2.268508	-2.681766
44	1	0	0.052995	3.622869	2.695231
45	1	0	-1.146884	3.168800	1.467265
46	1	0	0.164686	4.280438	1.056443
47	1	0	3.354902	2.370852	3.170668
48	1	0	2.408802	1.068348	3.875655
49	1	0	1.726362	2.709756	3.788923
50	1	0	-6.258824	-3.780708	2.004986
51	1	0	-4.513765	-3.841200	1.623024
52	1	0	-5.148858	-2.585821	2.735561

References

[1] Goto, H.; Osawa, E.; J. Am. Chem. Soc. 1989, 111, 8950-8951.

[2] Goto, H.; Osawa, E.; J. Chem. Soc., Perkin Trans. 2, 1993, 187–198.

[3]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.;Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision D.01; Gaussian, Inc.: Wallingford, CT, 2005.

[4]. Bruhn, T.; Hemberger, Y.; Schaumlöffel, A.; Bringmann, G. *Spec Dis*, version 1.51, University of Würzburg, Germany, 2010.

Figure S1. Structures of (1*S*)-1 and (1*R*)-1.

Figure S2. B3LYP/6-31+G** optimized lowest energy 3D conformer of (1S)-1 and (1R)-1.

Fig. S3 The HPLC chromatograms of pegaharmaline A (1) and its corresponded UV spectrum. (MeOH:H₂0 10% \rightarrow 80% 80 min)

S12

Fig. S8 The $^{1}H^{-1}H$ COSY spectrum of pegaharmaline A (1) in DMSO-d₆

Fig. S9 The NOESY spectrum of pegaharmaline A (1) in DMSO-d₆

4b 4a 0 F D 2NH MeC Е 8' ⁹N⁻⁻⁻ H_{11' 2'} В С А 3'a N 4' 12' 1 1 ppm-1.0 0 H 00 -1.5 0,0 0 0 0 ۵ **1**000 2.0 6 D N 2.5 0 ٥ • 0 3.0 Ô 00 0 0 De 3.5 0 \odot 4.0 O 0 0 Ø 4.5 4.0 3.0 2.5 3.5 2.0 1.5 ppm

Fig. S10 Expanded NOESY spectrum of pegaharmaline A (1) in DMSO-d₆

Fig. S12 The HMBC spectrum of pegaharmaline A (1) in DMSO-d₆

Fig. S13. The HR-ESIMS spectrum of pegaharmaline A (1) in CH₃OH

Mass Spectrum Molecular Formula Report

Analysis Info							Acquisit	tion Date	5/14/	2014 2:0	2:04 PI	M
Analysis Name Method Sample Name Comment	lysis Name D:\Data\20140514ceyang\WKB-53.d hod Liu_low_20131025.m hple Name WKB-53 hment					Operator Bru Instrument / Ser# mic			ker Customer rOTOF-Q 125			
Acquisition Par	ameter											
Source Type Focus Scan Begin Scan End	ESI Active 50 m/z 1000 m/z	z	lon Po Set Ca Set En Set Co	larity pillary d Plate Offse Illision Cell R	Pos 450 t -500 F 300	itive 0 V 0 V 0 V .0 Vpp	S S S	et Nebuliz et Dry Hea et Dry Ga et Divert \	er ater s /alve	0.3 B 180 ° 4.0 M Sourc	ar C min ce	
Generate Molec	ular Formula	a Parame	eter									
Formula, min. Formula, max.	C24H22N40	02Na										
Measured m/z	421.164			Tolerance	5	ppm		Charge	1			
Nirogen Rule	10			Minimum Electron Cor	U oficuration	a both		Maximun	n U			
Filter H/C Ratio Estimate Carbon	no yes			Minimum	0			Maximun	n 3			
Intens. x104 2.5 2.0 1.5 1.0 0.5			399.1826	3	21.1644					+	MS, 0.1r	nin #5
0.0		380	400		420		140	460	·····	480	···· ,	m/z
	Sum Formula	Clame		Err (norm)	Maan E	er foom 1	Err (mDa)	rdb	N Dule	_		
C 24 H 22	N 4 Na 1 O 2	0.060	421.1635	-2.07	mean E	-4.40	-0.87	15.50	ok	even		

FIELD FIELD TEXT

Data Set: 没有

Fig. S19 The 13 C-NMR spectrum of pegaharmaline B (2) in DMSO-d₆

Fig. S20 The ${}^{1}H^{-1}H$ COSY spectrum of pegaharmaline B (2) in DMSO-d₆

Fig. S23. The HR-ESIMS spectrum of pegaharmaline B (2) in CH₃OH

Spectrum Peak Pick Report

FIELD FIELD TEXT

FIELD TEXT

Fig. S25. The IR spectrum of pegaharmaline B (2) in CH₃OH

