Supporting Information for

Stereoselective Synthesis of (E)-3,3-diaryl and (E)-3-aryl-3-aryloxy Allylamines and Allylalcohols from *trans*-Cinnamyl chloride and alcohol

Jones Limberger, Thiago S. Claudino and Adriano L. Monteiro*

Laboratory of Molecular Catalysis. Instituto de Química – UFRGS. Av. Bento Gonçalves, 9500; Porto Alegre 91501-970 – CP 15003, RS, Brazil.

1. Dehydrobromination optimization					
2. ¹ H-NMR and ¹³ C-NMR Compounds Spectra	S3				
	_				

3. NOE Experiments For determination of (*E*)-Configuration of Trissubstitued Products S28

1. Dehydrobromination optimization

Entry	Temp. (°C)	Solvent	Base	Conversion (%)	Seletivity 5a (%)
1^{a}	60	MeOH/THF	K ₂ CO ₃	39	72
2^{a}	60	THF/MeOH	КОН	33	76
3 ^a	60	THF	K ₂ CO ₃	38	51
4^{a}	60	THF	КОН	37	53
5 ^a	25	THF	КОН	40	98
6 ^b	35	THF	КОН	100	97 (88)

Table S1: Optimization of 4a dehydrobromintion conditions

Conditions: **4a** (1 mmol), base (2 mmol), solvent (8 ml). Internal standard: undecane. ^a 16 h, ^b 48 h. the value in brackets corresponds to isolated yield. Conversion determined by 1H-NMR and the isomer distribution (selectivity) determined by GC and GC-MS.

2. ¹H-NMR and ¹³C-NMR Compounds Spectra

S4

S6

Compound 4c

Compound **5b**

Compound 5c

Compound 6a

Compound 7a

Compound 8a

Compound 9a

Compound 10a

Compound 11a

Compound 12a

Compound 6c

Compound 9b

Compound 11c

3. NOE Experiments For determination of (*E*)-Configuration of Trissubstitued Products

NOE-1D (CycloNoe – Varian 300MHz) Experiment to determine the *E*-configuration of vinyl bromides **5**. When the aromatic hydrogens are saturated, is possible to see NOE correlation with allylic CH_2 (red). When allylic CH_2 is saturated, is possible to see NOE correlation with aromatic hydrogens (blue). When olefinic hydrogen is saturated, no NOE correlation with aromatic is observed.

NOE-1D (CycloNoe – Varian 300 MHz) experiment to determine the *E*-configuration of the vinyl bromides **5**. With the saturation of allylic CH_2 is possible to see NOE correlation with aromatic hydrogens (blue). With saturation of olefinic hydrogens, no NOE correlation is observed with aromatics. (green).

NOE-1D (CycloNoe – Varian 300 MHz) experiment to determine the *E*-configuration of the trissubstitued olefins. With the saturation of the olefinic hydrogen it is possible to note NOE correlation with the aromatic hydrogen singlet orto-methyl.

NOE-2D (Varian 400, mixing time 600 ms) experiment to determine the *E*-configuration of the trissubstitued olefins. It is possible to observe NOE correlation between the hydrogens of the SO₂Me substituted aryl group with the olefinic hydrogen (2). It is also possible to note NOE correlation of phenyl hydrogens and allylic CH₂ (1).

NOE-2D (Varian 400, mixing time 600 ms) experiment to determine the *E*-configuration of the trisubstitued vinyl-ethers. It is possible to observe NOE correlation between allylic CH_2 and hydrogens of the phenyl ring near to oxygen.

NOE-2D (Varian 400, mixing time 600 ms) experiment to determine the Econfiguration of the trisubstitued vinyl-ethers. It is possible to observe NOE correlation between allylic CH₂ and hydrogens of the unsubstitued phenyl ring.