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Supplementary Figure Legends: 

Figure S1: Calculation of CVI(x,y) allows for efficient detection of 

background information of images in the training set. 

Detection of pixels containing only background information using in silico 

generated images analyzed in Figure 1. (A) Representative histograms of the 

CVI(x,y) and mean intensity for each pixel across the images of the training 

set for 70 objects/field and 700 objects/field, respectively. Gaussian fit of the 

histogram of the CVI(x,y) that is used for determining the cutoff is shown in 

red. (B) Mapping of pixels with a CVI(x,y) < cutoff. An image representing the 

average of pixel intensities across the images of the training set is shown 

(grey) and all pixels identified to contain only background information using 

the algorithm are indicated in red.  

Figure S2: Application of vignetting correction on bright field images. 

(A) Bright field images taken from Hela cells grown on plastic substratum 

imaged using a 60x objective before and after vignetting correction. (B) Pixel 

intensities along the line indicated by the dotted line in (A) before and after 

correction.  

Figure S3: Application of vignetting correction restores object intensity 

and variability on artificially distorted images. 

Object intensities from images as in Figure 1A were analyzed using our 

algorithm and CellProfiler software for comparison. (A and C) Object 

intensities of original images, after distortion and after subsequent 

corrections are shown as the mean +/- SD for images containing 70 or 700 
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objects in images representing two different illuminations (Y and C in Figure 

1A). (B and D) Histograms of object intensities from images analyzed in (A 

and C, respectively). Only histograms for images containing 700 objects are 

shown. 

Figure S4: Vignetting correction significantly affects critical parameters 

of image analysis in a typical quantitative microscopy experiment. 

 (A) The distribution of GFP intensities of cells before and after vignetting 

correction from the experiment shown in Figure 3 is plotted. (B) The 

coefficient of variation (CV) of GFP intensity from cells as in (A) is shown. 
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Supplementary Tables: 

Table S1: Yeast strains used in this study 

Strain Relevant genotype Reference 

ySS4 BY4741, CDC19-GFP::His3 OpenBiosystems 

ySP257 W303, MATa leu2::LEU2-pSTL1-qVenus; 
his3::HIS3-pRPS2 qCFP 

this study 
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Implementation of the vignetting correction algorithm 

 
function corrFactor = flatnessCorrectionIllum_interp2_withFit(imagesForTrainingSet) 
  
% this function uses a cell array containing the images of the training set as an  
% input and returns the scaled correction factor. Format for the training set: 
% imagesForTrainingSet{numImagesInTrainingSet}(imgSizeX, imgSizeY) 
 
% retrieve parameters of the training set 
 
numImagesInTrainingSet = length(imagesForTrainingSet); 
  
imgSizeX = size(imagesForTrainingSet{1},1); 
imgSizeY = size(imagesForTrainingSet{1},2); 
  
% perform median filtering of all images of the training set to minimize noise 
 
for k=1: numImagesInTrainingSet 
    trainingSet(:,:,k) = medfilt2(imagesForTrainingSet{k},[10 10],'symmetric'); 
end 
 
% sort pixels across the training set  
  
trainingSet=sort(trainingSet,3); 
 
% calculate the CVI(x,y) for each pixel 
 
if (numImagesInTrainingSet > 4) 
    CVImage = std(trainingSet(:,:,2:numImagesInTrainingSet-1),0,3)… 
              … ./mean(trainingSet(:,:,2:numImagesInTrainingSet-1),3); 
else 
    CVImage = std(trainingSet,0,3)./mean(trainingSet,3); 
end 
  
CVImageToFlatten = CVImage(:,:,1); 
  
% calculate histogram of CVI(x,y) 
 
hist_max = max(CVImageToFlatten(:)); 
hist_min = min(CVImageToFlatten(:)); 
  
histX = 0:1:100; 
histX = double(histX./100); 
histX=histX*(hist_max-hist_min)*1.25+(9*hist_min-hist_max)/8; 
  
hist_CVimg = hist(CVImageToFlatten(:),histX); 
startValue_a = max(hist_CVimg); 
startValue_b = mode(CVImageToFlatten(:)); 
 
% fit single Gaussian function to determine the cutoff 
 
gaussianOptions = 
    fitoptions('Method','NonlinearLeastSquares','Lower',[0,0,0],'StartPoint', … 
    …[startValue_a,startValue_b,0.1],'MaxIter',10000); 
 
gaussianFittype = 
    fittype( @(a1,b1,c1,x) a1*exp(-((x-b1)/c1).^2),'options',gaussianOptions); 
  
histogrammFit = fit(histX',hist_CVimg',gaussianFittype); 
 
% calculate representation of the Gaussian distribution for vizalization  
 
fittedGaussian =  
    histogrammFit.a1*exp(-((histX-histogrammFit.b1)./histogrammFit.c1).^2); 
  
% Display histogram and Gaussian fit 
  
figure (1) 
clf(1) 
hold on 
plot(histX,hist_CVimg) 
plot(histX,fittedGaussian,'r') 
hold off 
 
% determine cutoff as mean + SD from the Gaussian fit 
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cutoff = histogrammFit.b1+histogrammFit.c1; 
  
 
 
 
% sample randomly 500 pixels with CVI(x,y) < cutoff as a starting point for the correction  
% factor 
 
c=0; 
  
while c<500 
    i= randi(imgSizeX); 
    j= randi(imgSizeY); 
    if (CVImageToFlatten(i,j)<cutoff) 
        c=c+1; 
        X(c) = i; 
        Y(c) = j; 
        if (numImagesInTrainingSet > 4) 
            Z(c) = mean(trainingSet(i,j,2:numImagesInTrainingSet-1)); 
        else 
            Z(c) = mean(trainingSet(i,j,:)); 
        end 
    end 
end 
  
% fit correction function using LOESS model 
  
fittedFactor = fit([X',Y'],Z','loess'); 
 
% calculate correction factor over a sparse grid representing the entire image using 
% the calculated fit 
  
X1 = 1:100:imgSizeX; 
X1 = [X1 imgSizeX]; 
  
Y1 = 1:100:imgSizeY; 
Y1 = [Y1 imgSizeY]; 
  
for i=1:length(X1) 
for j=1:length(Y1) 
    corrFactor_grid(i,j)= fittedFactor(X1(i),Y1(j)); 
end 
end 
 
% interpolate correction factor over the entire image 
 
x1 = 1:1:imgSizeX; 
y1 = 1:1:imgSizeY; 
  
corrFactor = interp2(X1,Y1',corrFactor_grid,x1,y1','spline'); 
  
%normalize correction factor 
  
corrFactor = corrFactor/max(corrFactor(:)); 
  
% display correction factor 
  
figure (2) 
clf(2) 
surf(corrFactor,'EdgeColor','none') 
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